[image: image1.png]
Web Services Distributed Management: Management Using Web Services (MUWS 0.5)

Committee Draft, 1 April 2004

Document identifier:

cd-wsdm-muws-0.5-20040401
Location:

http://docs.oasis-open.org/wsdm/2004/04/muws-0.5
Editors:

Andreas Dharmawan, Westbridge Technology <andreas@westbridgetech.com>
William Vambenepe, Hewlett-Packard <william_vambenepe@hp.com>
Abstract:

There are two parts of Web services Distributed Management: Management Using Web services and Management of Web services. This specification defines the former.

Management Using Web services defines how an Information Technology resource connected to a network provides the manageability interfaces such that it can be managed remotely using Web services technologies.

Status:

This document is a committee draft approved by the WSDM TC. It is not intended to become an OASIS standard. There is no guarantee that any part of its content will appear in the final release specification, MUWS 1.0.

Committee members should send comments on this specification to the wsdm@lists.oasis-open.org list. Others should subscribe to and send comments to the wsdm-comment@lists.oasis-open.org list. To subscribe, send an email message to wsdm-comment-request@lists.oasis-open.org with the word “subscribe” as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the WSDM TC web page (http://www.oasis-open.org/committees/wsdm/).

The errata document for this specification is at:
http://docs.oasis-open.org/wsdm/2004/04/muws-0.5-errata
Table of Contents

41
Introduction

51.1
Terminology

51.2
Notational conventions

62
Architecture

62.1
Context

72.2
Conceptual Model

82.3
Logical Model

92.3.1
Role Definitions

102.4
Composability

112.5
Processing Model

112.5.1
Prerequisites

112.5.2
Discovery

122.5.3
Interaction

133
Support from Web Services Platform

144
Manageability Capabilities

154.1
Identity

154.1.1
Definition

164.1.2
Data Types

164.1.3
Properties

184.2
State

184.2.1
Definition

184.2.2
Description of State Model

194.2.3
Data Types

204.2.4
Properties

204.2.5
Operations

214.3
Metrics

214.3.1
Definition

224.3.2
Data Types

234.3.3
Properties

244.3.4
Operations

255
Discovery and Introspection

266
Defining a Manageability Interface

277
References

277.1
Normative

287.2
Non-normative

29Appendix A.
Acknowledgements

31Appendix B.
Notices

32Appendix C.
Schemas (Normative)

34Appendix D.
WSDL elements (Normative)

36Appendix E.
Web Services Platform

36Initial Focus

36Properties

36Meta Data

37Addressing

37Notification

37Versioning

38Security

38Registration and Discovery

38Future Focus

38Policy

39Name Resolution

39Transaction

39Flow

40Negotiation

1 Introduction

Management Using Web Services (MUWS) enables management of distributed IT resources using Web services. Many distributed IT resources use different management interfaces. By leveraging Web service technology, MUWS enables easier and more efficient IT management systems by providing a flexible common framework for manageability interfaces that benefits from the features of Web services protocols. Universal management interoperability across the many different varieties of distributed IT resources can be achieved using MUWS.
The types of management capabilities exposed by MUWS are the management capabilities generally expected in distributed IT management systems. Examples of manageability functions that can be performed via MUWS include:

· monitoring quality of services

· enforcing service level agreements

· controlling tasks

· managing resource life-cycles

MUWS is designed to meet the requirements defined in the MUWS Requirements document [MUWS REQS]. Whenever possible, MUWS leverages existing Web services specifications to ensure interoperability, adoptability, and extensibility.

There is a minimum set of manageability capabilities the manageability provider must support in order to participate in MUWS. This minimum set of manageability capabilities is defined in this specification.

Additionally, the methods and mechanisms provided by MUWS for discovering the manageability interfaces of manageable IT resources are discussed in this specification.
Finally, the manageability interface itself is defined in this specification.

To understand the various topics discussed in this specification, the reader should be familiar with the IT management concepts. In addition, the following assumptions are made:

· The reader is familiar with the Web Services Architecture [WSA]
· The reader is familiar with XML [XML1.0 3rd Edition] , XML Schema [XML Schema Part 1] [XML Schema Part 2], and XML Namespace [XNS]
· The reader is familiar with WSDL [WSDL1.1], SOAP [SOAP1.1] , UDDI [UDDI]
· The reader is familiar with WS-ResourceProperties [WS-ResourceProperties], WS-Addressing [WS-Addressing]
Section 3, 4, 5, 6 and appendices C (schemas) and D (WSDL elements) are normative specifications with the following exception: UML illustrations found in section 4 are non-normative. The rest of the document is a non-normative, explanatory material intended to ease the understanding.
1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT","SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

1.2 Notational conventions

This specification uses an informal syntax to describe the XML grammar of the messages making up the management interfaces. This syntax uses the following rules:
· The syntax appears as an XML instance, but data types appear instead of values.

· {any} is a placeholder for elements from some other namespace (like ##other in the XML Schema).
· The Cardinality of an attribute, element, or {any}, is indicated by appending characters to the item as follows:
? none,or one
* none, or more
+ one, or more
No character exactly one
· Items contained within the square brackets, [and], are treated as a group.
· Items separated by | and grouped within parentheses, (and), indicate syntactic alternatives.

· Three consecutive periods, ... are used in XML start elements to indicate that attributes from some other namespace are allowed.

· The XML namespace prefixes,defined below, indicate the namespace of the Item.
When defining operations, this specification uses pseudo-schema to describe the input and,if appropriate, output messages. A full WSDL description of all operations is available in the appendix of this specification.

2 Architecture

2.1 Context

This section provides a context for the MUWS Architecture. The MUWS Architecture makes use of the Web Services Architecture (WSA).

WSA provides a common definition of a Web service, as well as a conceptual model and context for understanding Web services and the relationships between Web service components. WSA describes the characteristics common to all Web services and describes some characteristics needed by many, but not all, Web services. Additionally, by identifying the global elements of the global Web services network that are required to ensure interoperability among Web services, WSA provides an architecture of interoperability for MUWS

Since WSA defines how to specify information and operations through WSDL interfaces, access through bindings, and discovery through endpoints it is consistent to use WSA to describe, as well as provide access to, and discoverability of, the manageable components of the WSA itself. In fact, this paradigm can be extended by providing access to, and discoverability of, any manageable resource in the IT infrastructure.

The management interface of a resource can be exposed through a Web service interface in the same way as the functional interface. This is true even if Web services are not used to provide access to the functionality of the resource.

Figure 2.1-1 illustrates two possible methods a manageable Web service may use to fulfill management requests on an exposed resource.

[image: image2.png]
Figure 2.1-1, MUWS on IT Resource

With the first method, a manageability service interacts directly with an exposed resource through a supported management interface. For example, the manageability service may interact with an exposed resource supporting Java’s JMX facility, or interact with an exposed resource supporting a proprietary C API.

With the second method, the manageability service interacts indirectly with an exposed resource through a management agent acting as an intermediary. This management agent interacts either directly or indirectly with the exposed resource.

This second method enables existing management instrumentation of a resource to be exported through Web services to a management consumer.

Whether the manageability service uses the direct method or the indirect method, the management consumer is provided a consistent view of the management instrumentation of the exposed resource. The management consumer remains unaware of any legacy management agent, facillity or API utilized by the manageability service.

Using Web services to describe and provide access to a manageability interface for an exposed resource creates a consistent, cross platform, cross vendor, and potentially cross enterprise interaction model for consumers and producers of management information.

Creating a Web services to access manageability information of an exposed resource does not preclude alternate means to access this information. For example, a management consumer is able to use any and all of WSDM MUWS, SNMP or CIM/WBEM to access manageability information for an exposed resource.

2.2 Conceptual Model

This MUWS specification defines how manageability of an arbitrary IT resource can be accessed via Web services. Manageability is one possible quality of a resource. Manageability is composed of a number of capabilities. Each capability has its own distinct semantics. Therefore, a manageable resource composes a set of manageability capabilities. Figure 2.3-1 relates the concepts necessary for MUWS.

According to the concepts in the WSDL specification, a Web service is an aggregate of endpoints. Each endpoint offers the Web service at an address that is accessible according to a binding. A Web service has some number of interfaces that are realized by its endpoints.
Each interface describes a set of named messages, and their formats, that can be exchanged. Properly formatted messages can be sent to the address of an endpoint in a way prescribed by the binding. A description, either as a document, or an artifact, is composed with definitions of interfaces and services. A description may contain definitions of interfaces, or definitions of services, or definitions of both.
In accordance with the Web services concepts expressed above, access to the manageability for a resource must be provided by an endpoint. We call such an endpoint a manageability endpoint. Implicitly, a manageability endpoint belongs to a manageability service, which has a number of manageability interfaces that are realized by manageability endpoints.
Thus, a single manageability interface represents all or part of a manageability capability. Similarly, a single manageability capability may be represented by one or more interfaces. The semantics of a particular interface includes the description of the set of possible message exchanges. The exchanges are rendered as message formats grouped into one or more interfaces.

For example, the ability to offer metrics could be captured in a “Metrics” UML model which is an instance of the manageability capability concept. The semantics of offering metrics could be rendered from the UML model into a WSDL interface description defined within the “http://docs.oasis-open.org/wsdm/2004/04/manageability/metrics” namespace. Such a rendering would be an instance of the manageability interface concept.

This specification defines the base set of manageability capabilities that can be composed into a manageable resource or combined into aggregate capabilities. For example, a TotallyManagableResource uber-capability could be defined that includes all of the base manageability capabilities defined in this specification. Such an aggregate manageability capability could also be composed into a manageable resource, and in that sense, an aggregate manageability capability is conceptually the same as any other capability. However, this specification does not currently attempt to define or identify aggregate capabilities. Rather, this specification focuses on the definition of the base set manageability capabilities.

[image: image3.png]
Figure 2.3-1, MUWS Concepts

2.3 Logical Model

A manageability provider may provide manageability capabilities for many resources. In other words a manageability provider may allow many resources to be exposed as manageable resources.
To accomplish this, a manageability provider maintains manageability endpoints. A manageability endpoint provides a means to access one or more manageable resources. According to our conceptual definition, a manageable resource is a resource composed with any number of manageability capabilities. In order to compose capabilities into the manageable resource, a manageability provider supports the manageability capabilities offered by its manageability endpoints.
For example, a manageability provider could embed code into a resource supporting the manageability capabilities of the resource, thus making the resource manageable. A manageability provider could also support manageability capabilities by deploying resources within a container that supports manageability capabilities for all its resources.
The manageability consumer manages manageable resources. To manage in this context means to exert control and to obtain and interpret information about the manageable resource. In order to manage the manageable resource, the consumer accesses manageability endpoints and exercises the manageability capabilities offered by the endpoint.
To exercise in this context means to use the distinct semantics of a manageability capability. Essentially, the consumer exercises an understanding of the semantics defined by a manageability capability, but exercises this understanding on an actual manageable resource. In a technical sense, to exercise offered manageability capabilities translates into using a distinct group of properties, operations, events and metadata by exchanging messages with the manageability endpoint.

For example, consider a server with several disk drives. The manageability provider could be a software process running on the server. This manageability provider could allow each disk drive to become a manageable resource by providing a manageability endpoint for each disk drive. The implementation of these endpoints by the provider could use OS calls to access the disk drives. This pattern could be used to provide manageability capabilities exposed through manageability endpoints, such as retrieving the amount of disk space available in each disk drive.
An IT management console, acting as a manageability consumer, could then exercise this manageability property by connecting to the manageability endpoints provided by the manageability provider. Using this example, the management console could retrieve the amount of disk space available on each disk drive.
[image: image4.png]
Figure 2.4-1, MUWS Logical Model

2.3.1 Role Definitions

This section defines the roles and interactions of the major components of MUWS, and related components, within the MUWS Architecture. This section is not intended to constrain the locus of implementation., Rather, this section documents the required components, their roles, and how they interact.

NOTE: One implementation may be a single component with many roles while another implementaion may be composed of several components, each with an assigned role.

The major roles are the manageability consumer, the manageability provider, and the manageability resource. These roles are represented by the shaded boxes in the MUWS Logical Model (Figure 2.4.-1).

2.3.1.1 Manageability Consumer

The manageability consumer:

· Consumes management information about the resource
· Manages, monitors, configures the resource

· Understands the manageability capabilities of the resource

2.3.1.2 Manageability Provider

The manageability provider:

· Provides the manageability quality for a resource, enabling a resource to become a manageable resource

· Provides management information for consumers according to the manageability capabilities of the resource

NOTE: The manageability provider may be implemented in the manageable resource or it may not. The manageability provider may provide the manageability quality for more than one resource. Thus, the role of manageability provider is not intended to constrain the locus of implementation.

2.3.1.3 Manageable Resource

The Manageable Resource is an IT resource that is manageable via a MUWS based infrastructure. Because there are no restrictions on the locus of implementation, the manageable resource may, or may not, implement the role of manageability provider for the manageability service.

A manageable resource does not have to be fine-grained. To illustrate this point, a complete server could be a manageable resource. The manageability provider offering the manageability endpoint for the server can run either on the server, or on some other machine. At an even higher level of granularity, a server farm could be exposed as a single manageable resource. For example, an IT management software package could act as a manageability provider offering manageability endpoints for the server farm, and exposing manageability capabilities. Examples of manageability capabilities might be retrieving the aggregate available disk space for all servers in the farm, or, bringing up or down all servers in the farm. Such a manageability provider for the server farm could be implemented using a set of proprietary interfaces for the servers in the farm., Alternatively, if the servers are manageable resources, such a manageability provider could act as a manageability consumer by accessing and aggregating the manageability capabilities of the servers in the farm.

2.4 Composability

MUWS allows the resource and its service to be manageable in a standard and interoperable manner. This is achieved by defining the manageability capabilities and interfaces of a resource. A resource may support both manageability capabilities and functional capabilities. In this case, the resource may allow manageability consumers access to appropriate functional capabilities along with the manageability capabilities. Managers could discover such composition by inspecting the service description.
Managers could take advantage of the composition of manageability with functional capabilities by querying for free disk space using a disk manageability capability and then reading disk sectors using a disk functional capability. Composability makes it easy for implementers of a resource service to offer an appropriate subset of functional capabilities along with its manageability capabilities.
2.5 Processing Model

Compliant implementations of the roles as defined in section 2.3, the logical model, act according to the following basic processing rules.

2.5.1 Prerequisites

A manageability consumer and a manageability provider must understand the information model within which semantics of a manageability capability are described. For example, a UML model could express a group of properties, operations, events and metadata. The meaning of what the model defines must be equally understood by both parties, provider and consumer. The base capabilities defined in MUWS, as well as the capabilities defined in domain-specific specifications built on top of MUWS, are the means to achieving such an understanding.
A manageability consumer and a manageability provider both must understand how to identify which manageability interface corresponds to with a manageability capability, and vice versa. The base capabilities described in MUWS are the means to achieving such and understanding.
A manageability consumer must be able to obtain the description of the manageability service, its endpoints and necessary manageability interfaces. The manageability provider,or another party on behalf of the provider, makes such descriptions available to the consumer.
A manageability provider must be able to obtain the description of the manageability interfaces for the capabilities it wants to support. MUWS includes in-line descriptions,usually as appendices, of XML Schemas and WSDL elements for manageability capabilities. MUWS also indicates URL locations of such XML schema documents and WSDL documents hosted on the OASIS Web site.
2.5.2 Discovery

A manageability consumer discovers the necessary manageable resources by discovering the manageable endpoints, reading their descriptions and exchanging messages as required. MUWS indicates which manageability capabilities can be used to discover other Web services endpoints or other manageability endpoints.
To discover manageable endpoints, the consumer uses the same discovery techniques as used for any Web service endpoints. For example, the consumer may be provided with a URL referencing a WSDL document describing the manageability service.

A manageability provider advertises, registers, and publishes available manageability endpoints just like any other Web service endpoints.

A manageability consumer establishes which capabilities are supported by the manageable resource either from the description of the manageability service or by exchanging messages with the manageability endpoint. For example, a consumer may inspect a WSDL document looking for manageability operations it is interested in. MUWS and the specifications that build on top of it clearly indicate which message Qnames correspond to which operations and which capabilities they participate in.
2.5.3 Interaction

A manageability consumer exerts control over, and obtains information about, the manageable resource by exchanging messages with one or more manageability endpoints providing access to the manageable resource. Message exchanges must match the format and sequence as prescribed by the binding description of the endpoint. This interaction is no different than exchanging messages with functional Web service endpoints.

Figure 2.5.3-1 captures the main principles of the processing model as described above. In this context, to interact means to exchange messages.

[image: image5.png]
Figure 2.5.3-1, MUWS Basic Processing Model

3 Support from Web Services Platform

Management Using Web Services (MUWS) is a foundation for management of all IT resource domains. It accomplishes this goal by using Web services features and standards to provide a flexible, scalable, distributed, and collaborative management framework. An overview of the features of this framework is provided in Appendix E, Web Services Platform. Appendix E also provides details about these Web service features. and motivating factors for using Web services features in MUWS, and provides a non-normative analysis of what standards or capabilities should be leveraged to support these features.
MUWS leverages the Web Services Resources Framework ([WSRF]), in which, the MUWS manageable resources are represented by Web services as “resources”, in the WSRF sense of the term. This implies that references to manageability endpoints in MUWS use the mechanism defined by WSRF, leveraging endpoint references (EPR) as defined by WS-Addressing.

If the manageability endpoint corresponds to a variable number (zero or more) of manageable resources, then the WSRF Implied Resource Pattern MUST be followed. This means that the element(s) listed in the ReferenceProperties of a WS-Resource qualified EPR must be included in the header of messages sent to such manageability endpoints. This specification does not currently define how to obtain the EPR. There may be an out-of-band agreement between provider and consumer on how to obtain EPRs or future versions of this specification would clarify this subject.

In the specific case where a manageability endpoint corresponds to one and only one manageable resource, then, either the WSRF Implied Resource Pattern,as above, or the singleton WS-Resource implied pattern MUST be used. If the singleton WS-Resource implied pattern is used, this means that the manageability endpoint does not expect to receive the elements listed in the ReferenceProperties section of WS-Resource qualified EPRs in the message headers to indicate which resource is being managed. A manageability consumer who does not have an EPR for a manageability endpoint MAY try to invoke manageability operations without including reference properties information. If such an invocation succeeds, the manageability consumer knows it is talking about a manageable resource through a manageability provider.

Further, management properties defined in MUWS are represented as “properties”,in the WSRF sense of the term, using the mechanisms defined in WS-ResourceProperties ([WS-ResourceProperties]). This means that each manageable resource exposes a resource properties document and makes this document available as specified in WS‑ResourceProperties.

Supporting WS-ResourceProperties means that any implementation of an interface that includes properties MUST include access methods to these properties as defined by WS‑ResourceProperties. Specifically, the interface MUST include the GetResourceProperty operation defined by WS-ResourceProperties and MAY include the GetMultipleProperties, SetResourceProperties and QueryResourceProperties operations. If the QueryResourceProperties operation is provided, it SHOULD support the XPath 1.0 query expression dialect, represented by URI http://www.w3.org/TR/1999/REC-xpath-19991116.
For security, MUWS relies on generic Web services security mechanisms, including transport‑level security and WSS SOAP Message Security as standardized by OASIS. MUWS 1.0 will include a more detailed “security considerations” section.
Events are not supported in MUWS 0.5 but will be supported in MUWS 1.0. To do so, MUWS 1.0 will leverage a Web services eventing mechanism.
4 Manageability Capabilities

There is a minimum set of manageability capabilities that the manageability provider must support in order to implement the MUWS specification.
Manageability capabilities define resource specific properties, operations and events. Details of these manageability capabilities are exposed by the manageable resource.

A manageable resource MAY also define new resource-specific manageability capabilities.

A manageable resource SHOULD extend a MUWS manageability capability when defining a resource-specific manageability capability that uses similar semantics. A manageable resource is not required to extend a MUWS manageability capability when defining a resource-specific manageability capability that uses conflicting semantics.

Each capability is formally expressed in a UML diagram using the following approach. Figure 4-1 expresses that a ManageableXSampleCapabilityY is a concept X manageability capability, which is also a manageability capability in a general, conceptual, sense. The name of the capability identifies the distinct semantics that the capability bears. Semantics are then expressed as properties, operations, events and metadata contained in the capability model representation (UML class).

[image: image6.png]
Figure 4-1 Manageability Capability UML Sample

Properties and operations are expressed as regular UML properties and operations. The meaning of properties and operations is expressed in the text. Properties are defined with, and operations act upon, the information types that are captured by UML classes. SamplePropertyType1 is an example of such an information type. Simple information types may also be used directly when defining properties and operations. For example, xsd:int is an example of a simple information type that belongs to XML Schema Data Types UML package.
As a simplification, this document uses a convention that all simple information types having a name which name with xsd: belong to that package. XML Schema simple information types, or data types, are defined by the W3C specification at http://www.w3.org/TR/xmlschema-2/.

Events are expressed as UML properties with an <<event>> strereotype. The name of the property is the name of the event. The text describes why and when an event occurs and the specific information that is generated or captured when the event occurs. The information type of an event is captured in a UML class which contains proper information element definitions. SampleEventInformationType1 is an example of an event information type.

Optionality of properties and events is indicated by multiplicity of the corresponding model elements: [1] indicates that an element is mandatory, [0..1] indicates that an element is optional. For array properties, [0..*] indicates optional and [1..*] indicates mandatory.

The metadata about various model elements is captured as UML constrains. For example, sampleReadOnlyProperty has an {ro} constraint. This document uses the following common constraints in the models.

· ro – means read only, applicable to properties,

· rw – means read/write, applicable to properties.

· const – means constant, does not change during runtime, applicable to properties.

In this section the following namespaces will be used unless specified otherwise. Table 4-1 describes what prefix corresponds to which namespace URI.

	Prefix
	Namespace

	muws-xs
	http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema

	muws-wsdl
	http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/wsdl

	wsdl
	http://www.w3.org/2002/07/wsdl

	soap
	http://schemas.xmlsoap.org/wsdl/soap/

	xs
	http://www.w3.org/2001/XMLSchema

Table 4-1 Manageability Capability Namespaces

XML elements and schema types introduced in this section belong to the muws-xs namespace.

WSDL elements introduced in this section belong to the muws-wsdl namespace.
4.1 Identity

4.1.1 Definition

The goal of Identity is to establish whether two entities are the same. This is a required capability and it MUST be provided by every manageability service. Observe that this requirement does not preclude the manageability service using a security policy that prevents some requester from accessing a capability.

In addition, this interface is used as a “marker” interface to allow a consumer to know that the service that implements it is a manageability service. See section 2.5.2, Discovery, for additional information.

Figure 4.1.1-1 shows the UML representation of MUWS Identity.

[image: image7.png]
Figure 4.1.1-1 MUWS Identity

4.1.2 Data Types

This specification does not define any data type to represent Identity.

4.1.3 Properties

Following is the specification of the resource Identity properties (elements).

<ResourceId>xsd:anyURI</ResourceId>

<Name>xsd:string</Name>?
<Version>xsd:string</Version>?
Following is an example excerpt from a resource properties instance document that contains these properties.

<ResourceId>http://example.com/resource/diskDrive/9F34AD35B</ResourceId>

<Name>The disk drive in Bob’s laptop</Name>

<Version>1.0</Version>

ResourceId is an opaque identifier of the resource managed through the manageability endpoint. It is a read-only mandatory property that has a cardinality of 1.
The following constraints are applicable to ResourceId:

· Globally unique: A manageability endpoint MUST create the ResourceId URI in a way that ensures that the ResourceId is unique to the resource managed through the manageability endpoint and globally unique.. This specification does not prescribe the means by which global uniqueness is achieved.
· Uniqueness in time: A ResourceId MUST NOT be reused by any manageability endpoint for another resource, even after the original resource no longer exists.
· Consistency across endpoints: A manageability provider SHOULD use the ResourceId that is suggested by the characteristics of the resource to identify the resource. This is for example possible when the ResourceId can be retrieved from the resource by the manageability endpoint or when an application of MUWS to a given domain specifies a method to build the ResourceId based on characteristics of the resources within the domain. It is not guaranteed that different manageability endpoints attached to the same resource will, in all cases. return the same ResourceId
· Consistency within an endpoint: A manageability provider that exposes several manageability endpoints for the same resource SHOULD use the same ResourceId for all manageability endpoints.
· Persistence: A manageability endpoint SHOULD return the same ResourceId during the entire lifetime of the manageability endpoint, including across power cycles of the manageability endpoint. Resources which are not able to persist the ResourceId across power cycles of the manageability endpoint SHOULD try to provide a consistent ResourceId via predictable identifier generation or delegation of Identity assignment. Manageability consumers may not be able to determine if two manageable resources which do not provide the same ResourceId correspond to the same resource and as a result a single resource may be treated as many resources.
· Equality: If the ResourceIds are equal then the consumer MUST assume that the two manageability endpoints represent the same resource. However, a manageability consumer MUST NOT assume that two manageability endpoints are representing two different resources solely because the ResourceId is different. Two different ID’s could conceivably reference the same resource. It is strongly recommended that this condition be avoided in a conscious and deliberate manner, as some managers may not be able to distinguish that the two identifiers are, in fact, attached to the same resource. Thus, the managers would be forced to treat every identifier as an attachment to an unique resource.
Since the ResourceId is defined as opaque, this specification does not allow the consumer to infer any characteristic of the resource by examining the ResourceId, other than comparing the ResourceId to another ResourceId as one way to establish oneness. For example, one possible way to construct the ResourceId and ensure its uniqueness is to use a UUID wrapped in a URI.

Note that this specification does not define equivalence of URIs and the consumer should decide which level of the comparison ladder defined in section 6 of [RFC2396bis] is appropriate to use for this comparison.

The following two paragraphs describe a mechanism, intended to be introduced in MUWS 1.0, called “correlatable names”. This mechanism is not available in MUWS 0.5.

The correlatable names mechanism is one of several possible mechanisms that can be used when the ResourceId mechanism cannot provide certainty about the oneness of two resources. The correlate management capability can be used by a resource manager to determine if two different resouceIds, produced at different times, by the same manageability provider for an endpoint, represents the same endpoint.
The basic idea is to provide a list of properties that, if all are equal between two manageability endpoints, guarantees that the resource(s) behind the manageability endpoints are one. In the case where two ResourceIds match but the correlatable names do not, a case that is not allowed, but can not be guaranteed never to happen, the resource is considered to be the same. This is because the ResourceId has precedence over the correlatable name.

Name is a string containing a descriptive name for the resource being managed. The Name is intended for human consumption. It is a read-write optional property that has a cardinality of 0..1.
Version is a string representing the version of the resource being managed. MUWS does not specify how this string is constructed. The version string can be specified by any domain-specific specification that use MUWS. Version is a read-write optional property with a cardinality of 0..1.
4.2 State

4.2.1 Definition
The goal of this section is to define a state model for any IT resource and state management capabilities through Web services. The state model must support the state change capabilities and the events for lifecycle and status changes. Additionally, the state model must be extensible.
Figure 4.2.1-1 shows the resource state model without any sub-states.

[image: image8.png]
Figure 4.2.1-1 Resource State Model

Figure 4.2.1-2 shows the UML representation of MUWS State.

[image: image9.png]
Figure 4.2.1-2 MUWS State

4.2.2 Description of State Model

Universal Resource Identifiers (URI) for the valid top-level resource states :
· http://docs.oasis-open.org/wsdm/2004/04/muws/state/available

This URI corresponds to the Available state in the UML diagram. A resource in the Available state is able to perform all of its functional tasks.

· http://docs.oasis-open.org/wsdm/2004/04/muws/state/degraded

This URI corresponds to the Degraded state in the UML diagram. A resource in this Degraded state is able to perform some, but not all, of its functional tasks.

· http://docs.oasis-open.org/wsdm/2004/04/muws/state/unavailable

This URI corresponds to the Unavailable state in the UML diagram. A resource in this state is not able to perform any of its functional tasks.
The resource state model, as defined in this specification, identifies three generic states that are relevant for most, if not all, types of resources. Implementers SHOULD reuse a defined state if it is appropriate for their resource. It is anticipated that new states, and corresponding URIs, may need to be defined. For example, the need for a new state may be indicated when the existing states do not represent the intended meaning for a resource, or, when the existing states are too general and the implementer wishes to expose a more specific and useful state description. Just as implementers MAY create new states, implementers MAY create new transitions between any two states. Note, the two states involved in the transition need not be defined within the same organization. Also, note that until MUWS defines a way to represent the state model for a resource, "creating a new transition" just means writing some text to explain that a resource state can change from one state to another. Finally, please note that we expected MUWS 1.0 will define a mechanism enabling implementers to define resource states as sub-states of another state, and, will specify the recommendations for its use.

The following table lists the valid transitions between the top-level resource states.

	Start State
	End State

	Available
	Degraded

	Available
	Unavailable

	Degraded
	Available

	Degraded
	Unavailable

	Unavailable
	Available

4.2.3 Data Types

The following is a schema fragment declaring reusable data types for managing the resource state.

<xs:complexType name="StateInformation">

<xs:sequence>

<xs:element name="State" type="xs:anyURI"/>

<xs:element name="TimeEntered" type="xs:dateTime"/>

</xs:sequence>
</xs:complexType>
The (StateInformation) type contains information about a resource state.

The (StateInformation)/State element provides the URI of a resource state.

The (StateInformation)/TimeEntered element provides the time the resource entered the identified state.

4.2.4 Properties

The resource state properties, or elements, are specified as follows:
<ResourceState>StateInformation</ResourceState>

The following fragment provides an example from a resource properties instance document containing this property:
<ResourceState>

<State>

 http://docs.oasis-open.org/wsdm/2004/04/muws/state/available
</State>

<TimeEntered>2004-03-11T11:30:56Z</TimeEntered>
</ResourceState>

The ResourceState property contains the current state of the resource as of the indicated time. This property is a read-only and mandatory with a cardinality of 1
4.2.5 Operations

This section describes the messages for performing operations on the state of a resource.
4.2.5.1 Start

Request:

<Start/>

Reply:

<StartOK/>

Upon receiving a request for a Start operation, a manageability provider attempts to transition the resource state from Unavailable to Available, according to the state model. If the transition completes, then the operation also completes successfully. If the initial resource state is Available, this operation completes successfully.

4.2.5.2 Stop

Request:

<Stop/>

Reply:

<StopOK/>

Upon receiving a request for a Stop operation, a manageability provider attempts to change the resource state from Available, or Degraded, to Unavailable according to the state model. If the transition completes, this operation completes successfully. If the initial resource state is Unavailable, this operation completes successfully.

4.3 Metrics

4.3.1 Definition

Metrics are a specific type of property. Metrics represent collected values and have a related collection period.

The goal of this section is to describe the characteristics of a typical property used to represent collected numerical data, called Metrics. A common characteristic of metrics is that they change over time and can be reset.

Figure 4.3.1-1 presents the Metrics capability in context.
[image: image10.png]
Figure 4.3.1-1 MUWS Metrics

As a simple example, consider a toll bridge with two properties; the length of the bridge and the number of cars that have passed over the bridge. The length of the bridge, while numeric, is not a metric; it represents the current configuration of the bridge. You can not reset the length of the bridge. By contrast, the number of cars that have passed over the bridge is a metric. It requires collecting, or counting, the number of cars typically for some duration of time, such as the last hour, the last day or even since the bridge was constructed. You can reset the number of cars, for example, at the start of a new interval.

When accessing metrics, the time associated with the metric is typically required. In the example, above it would be useful to know that the number “500” represents the number of cars that have passed over the bridge in the last three minutes. Similarly, if data is posted on a periodic basis, it may be useful to know the time of last update.. For this reason, the standard data type for Metrics has reset-time and update-time attributes. However, both are optional.

When looking at a value, it is important to have a notion of how changes to that metric are interpreted. That notion is defined as a change type. Metrics have two (2) change types:
· Counter, increments with usage

· Gauge, moves between a range of values

Metrics can be reset either periodically, such as 'once a day', or on demand. The meaning of resetting a metric varies with each metric. The meaning of a metric SHOULD be clarified as needed, in the description of a metric. Often, resetting a metric means setting its base or initial value, typically zero, but this is not mandatory. (Note that this specification provides no specific means for the scheduling of reset operations.)

4.3.2 Data Types

The following schema fragment declares the (reusable) data types used to manage the metrics of the resource. All attributes defined in the MetricAttributes attribute group are optional.
<xs:attributeGroup name="MetricAttributes">

<xs:attribute name="ResetAt" type="xs:dateTime"/>

<xs:attribute name="LastUpdated" type="xs:dateTime"/>

<xs:attribute name="ChangeType">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Counter"/>

<xs:enumeration value="Gauge"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="TimeScope">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Interval"/>

<xs:enumeration value="PointInTime"/>

<xs:enumeration value="SinceReset"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:anyAttribute namespace="##other" processContents="lax"/> </xs:attributeGroup>
(MetricAttributes) attribute group MUST be included in every metric type or metric property element declaration.

(MetricAttributes)/ResetAt indicates the time when a particular metric was reset. UTC or Z-coded can be reported.
(MetricAttributes)/LastUpdated indicates the last update time of a metric value.

(MetricAttributes)/ChangeType indicates a type of change pattern supported by a metric.

· Counter declares a metric value.
· that can only increase

· Gauge declares a metric value that can increase or decrease
(MetricAttributes)/TimeScope indicates the time interval used to calculate a metric.

· Interval declares a metric value that is calculated within a certain time interval. Usually the interval is defined by the specification of the metric property. For example, RequestsPerSecond is an interval metric.

· PointInTime declares a metric value that is calculated when the metric property is retrieved. For example, CurrentTemperature is a point-in-time metric.

· SinceReset declares a metric value that is calculated since the ResetAt time mark.

The following three types are defined for metrics that are integers, durations, or times. Specifications that use MUWS to create manageability properties applicable to specific domains are encouraged to use these types, or to create new metric types, by including the MetricAttributes attribute group in created metric types.

<xs:complexType name="IntegerMetric">

<xs:simpleContent>

<xs:extension base="xs:integer">

<xs:attributeGroup ref="muws-xs:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>
</xs:complexType>
(IntegerMetric) type declares an xsd:integer metric.

<xs:complexType name="DurationMetric">

<xs:simpleContent>

<xs:extension base="xs:duration">

<xs:attributeGroup ref="muws-xs:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>
</xs:complexType>

(DurationMetric) type declares an xs:duration metric.

4.3.3 Properties

The following provides the specification of a resource metrics property.
<CurrentTime>xs:dateTime</CurrentTime>

Th following is an example fragment of a resource properties instance document containing this property.

<CurrentTime>2004-03-11T11:30:56Z</CurrentTime>

CurrentTime contains the time it was retrieved from the manageability provider. This property is useful to manageability consumers when analysing time values received from a manageability endpoint in the absence of a time synchronization mechanism. It is a read-only mandatory property that has a resource cardinality of 1.
The Metrics capability requires the CurrentTime property is present in the resource, and provides a reference point for time-based attributes as defined by metric data types. Note that CurrentTime is not a metric, Rather, it is a property of type xsd:dateTime defined as part of the “Metrics” capability, consequently, ResetAll() operations have no effect on CurrentTime.)

4.3.4 Operations

The following messages can be exchanged to perform operations on resource metrics.

4.3.4.1 ResetAll

Request:

<ResetAll/>

Reply:

<ResetAllOK/>

Upon receiving a ResetAll request, a manageability provider resets the value for each of its metrics. . A subset of the metrics for a resource can be organized as a logical group and reset by other mechanisms. However, a ResetAll request indicates that all metrics for a resource SHOULD be reset. Note that a manageability consumer MUST NOT assume that different metrics are reset at the same time, even if they are provided by the same manageability endpoint.

5 Discovery and Introspection

Many forms of discovery are supported by Web services. This specification does not prescribe a normative method for discovering manageability services. It is expected that discovery methods as commonly used for Web services will be used as discovery methods for manageability services.

There exists but one normative requirement relative to discovering manageability services, as follows: A manageability service MUST provide the Identity capability through the corresponding WSDL interface as defined by MUWS. As a result of this requirement, a consumer can inspect the WSDL description for a Web service and determine if the discovered service acts as a manageability service.. If the discovered service implements the Identity interface defined by MUWS, then it is a manageability service..

6 Defining a Manageability Interface

The following are normative statements for MUWS representation.

· WSDL 1.1 must be used.

· Additionally, WSDM defines portTypes which have to be combined into a custom portType, operation by operation, according to the WSDL specification.

· Document/literal binding must be used.

· MUWS defines property elements which have to be combined into a custom properties document according to WS-ResourceProperties specification

7 References

7.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XML Schema Part 1]

Henry S. Thompson, et al. XML Schema Part 1: Structures, W3C Recommendation, May 2001, http://www.w3.org/TR/xmlschema-1/

[XML Schema Part 2]

Paul V. Biron, et al. XML Schema Part 2: Datatypes, W3C Recommendation, May 2001, http://www.w3.org/TR/xmlschema-2/
[XML1.0 3rd Edition]

Tim Bray, et al., Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, February 2004, http://www.w3.org/TR/REC-xml
[XNS]
Tim Bray, et al., Extensible Namespaces in XML, W3C Recommendation, January 1999, http://www.w3.org/TR/REC-xml-names/
[SOAP1.1]
Don Box, et al., Simple Object Access Protocol (SOAP) 1.1, W3CNote, May 2000, http://www.w3.org/TR/soap11/
[WSDL1.1]
Erik Christensen, et al., Web services Description Language (WSDL) 1.1, W3C Note, March 2001, http://www.w3.org/TR/wsdl
[UDDI]
Tom Bellwood, et al., Web UDDI Version 3.0, UDDI Spec Technical Committee Specification, July 2003, http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
[WSA]
David Booth, et al. Web Servics Architecture, W3C Working Group Note, February 2004, http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
[WSRF]
Karl Czajkowski, et al. The WS-Resource Framework version 1.0, http://devresource.hp.com/drc/specifications/wsrf/WSRF_overview-1-0.pdf and related documents available at http://devresource.hp.com/drc/specifications/wsrf/index.jsp
[WS-ResourceProperties]

Steve Graham, et al., Web service Resource Properties version 1.1, January 2004, http://devresource.hp.com/drc/specifications/wsrf/WS-ResourceProperties-1-1.pdf
[WS-Addressing]
Don Box, et al., Web services Addressing, March 2003, http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-addressing.asp
7.2 Non-normative

[RFC2396bis]
T. Berners-Lee, et al., Uniform Resource Identifier (URI): Generic Syntax, IETF RFC 2396bis-04, February 2004, http://www.ietf.org/internet-drafts/draft-fielding-uri-rfc2396bis-04.txt
[MUWS REQS]
Pankaj Kumar, et al., Requirements – Management Using Web Services, Committee Draft, October 2003, http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/6185/WSDM-MUWS-Req-committee-draft-1.0-20031002.pdf
Appendix A. Acknowledgements
The following people made contributions to this specification:

· Winston Bumpus

<winston_bumpus@dell.com>

· Brian Carol

<brian.carroll@merant.com>
· Fred Carter

<fred.carter@amberpoint.com>

· John DeCarlo

<jdecarlo@mitre.org>

· Andreas Dharmawan
<andreas@westbridgetech.com>

· Mark Ellison

<ellison@ieee.org>

· Heather Kreger

<kreger@us.ibm.com>

· Hal Lockhart

<hlockhar@bea.com>

· Bryan Murray

<bryan.murray@hp.com>

· Richard Nikula

<Richard_Nikula@bmc.com>

· Micheal Perks

<mperks@us.ibm.com>
· Homayoun Pourheidari
<homayoun@hp.com>

· Karl Schopmeyer

<k.schopmeyer@attglobal.net>

· Igor Sedukhin

<Igor.Sedukhin@ca.com>

· Ellen Stokes

<stokese@us.ibm.com>

· William Vambenepe
<william_vambenepe@hp.com>

· Andrea Westerinen

<andreaw@cisco.com>

The following individuals were voting members of the committee during the development of this specification:

· Guru Bhat

<Guru.Bhat@oracle.com>

· Jeff Bohren

<jbohren@opennetwork.com>

· Winston Bumpus

<winston_bumpus@dell.com>

· Fred Carter

<fred.carter@amberpoint.com>

· John DeCarlo

<jdecarlo@mitre.org>

· Andreas Dharmawan
<andreas@westbridgetech.com>

· Mark Ellison

<ellison@ieee.org>

· Daniel Foody

<dan@actional.com>

· Heather Kreger

<kreger@us.ibm.com>
· Bryan Murray

<bryan.murray@hp.com>

· Paul Lipton

<paul.lipton@ca.com>

· Hal Lockhart

<hlockhar@bea.com>

· Rajiv Maheshwari

<rajiv.k.maheshwari@oracle.com>

· Richard Nikula

<Richard_Nikula@bmc.com>

· Michael Perks

<mperks@us.ibm.com>

· Homayoun Pourheidari
<homayoun@hp.com>

· Karl Schopmeyer

<k.schopmeyer@attglobal.net>

· Igor Sedukhin

<Igor.Sedukhin@ca.com>

· Davanum Srinivas

<Davanum.Srinivas@ca.com>

· Ellen Stokes

<stokese@us.ibm.com>

· Thomas Studwell

<studwell@us.ibm.com>

· Ryoichi Ueda

<ueda@sdl.hitachi.co.jp>

· William Vambenepe
<william_vambenepe@hp.com>

· Andrea Westerinen

<andreaw@cisco.com>
Concepts for the "Metrics" section were inspired by work from the DMTF applications/Metrics WG.

Appendix B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix C. Schemas (Normative)
<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:muws-xs="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema"

targetNamespace="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="ResourceId" type="xs:anyURI"/>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Version" type="xs:string"/>

<xs:complexType name="StateInformation">

<xs:sequence>

<xs:element name="State" type="xs:anyURI"/>

<xs:element name="TimeEntered" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:element name="ResourceState" type="muws-xs:StateInformation"/>

<xs:attributeGroup name="MetricAttributes">

<xs:attribute name="ResetAt" type="xs:dateTime"/>

<xs:attribute name="LastUpdated" type="xs:dateTime"/>

<xs:attribute name="ChangeType">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Counter"/>

<xs:enumeration value="Gauge"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="TimeScope">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Interval"/>

<xs:enumeration value="PointInTime"/>

<xs:enumeration value="StartupInterval"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:attributeGroup>

<xs:complexType name="IntegerMetric">

<xs:simpleContent>

<xs:extension base="xs:integer">

<xs:attributeGroup ref="muws-xs:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="DurationMetric">

<xs:simpleContent>

<xs:extension base="xs:duration">

<xs:attributeGroup ref="muws-xs:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:element name="CurrentTime" type="xs:dateTime"/>

<xs:complexType name="ResourceIdentityPropertiesType">

<xs:sequence>

<xs:element ref="muws-xs:ResourceId"/>

<xs:element ref="muws-xs:Name" minOccurs="0"/>

<xs:element ref="muws-xs:Version" minOccurs="0"/>

<xs:any minOccurs="0" maxOccurs="unbounded"

namespace="##other" processContents="lax"/>

</xs:sequence>

</xs:complexType>

<xs:element name="ResourceIdentityProperties"

type="muws-xs:ResourceIdentityPropertiesType"/>

<xs:complexType name="ResourceStatePropertiesType">

<xs:sequence>

<xs:element ref="muws-xs:ResourceState"/>

<xs:any minOccurs="0" maxOccurs="unbounded"

namespace="##other" processContents="lax"/>

</xs:sequence>

</xs:complexType>

<xs:element name="ResourceStateProperties"

type="muws-xs:ResourceStatePropertiesType"/>

<xs:complexType name="ResourceMetricsPropertiesType">

<xs:sequence>

<xs:element ref="muws-xs:CurrentTime"/>

<xs:any minOccurs="0" maxOccurs="unbounded"

namespace="##other" processContents="lax"/>

</xs:sequence>

</xs:complexType>

<xs:element name="ResourceMetricsProperties"

type="muws-xs:ResourceMetricsPropertiesType"/>

<xs:element name="Start"><xs:complexType/></xs:element>

<xs:element name="StartOK"><xs:complexType/></xs:element>

<xs:element name="Stop"><xs:complexType/></xs:element>

<xs:element name="StopOK"><xs:complexType/></xs:element>

<xs:element name="ResetAll"><xs:complexType/></xs:element>

<xs:element name="ResetAllOK"><xs:complexType/></xs:element>

</xs:schema>

Appendix D. WSDL elements (Normative)
<?xml version="1.0" encoding="utf-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsrp="http://www.ibm.com/xmlns/stdwip/web-services/WS-ResourceProperties"

xmlns:muws-xs="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema"

xmlns:muws-wsdl="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/wsdl"

targetNamespace="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/wsdl">

 <types>

 <xs:schema elementFormDefault="qualified"

targetNamespace="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/wsdl">

<xs:import namespace="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema"

schemaLocation="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema"/>

 </xs:schema>

 </types>

 <message name="StartRequest">

<part name="body" element="muws-xs:Start"/>

 </message>

 <message name="StartResponse">

<part name="body" element="muws-xs:StartOK"/>

 </message>

 <message name="StopRequest">

<part name="body" element="muws-xs:Stop"/>

 </message>

 <message name="StopResponse">

<part name="body" element="muws-xs:StopOK"/>

 </message>

 <message name="ResetAllRequest">

<part name="body" element="muws-xs:ResetAll"/>

 </message>

 <message name="ResetAllResponse">

<part name="body" element="muws-xs:ResetAllOK"/>

 </message>

 <portType name="Identity"

wsrp:ResourceProperties="muws-xs:IdentityProperties"/>

 <portType name="ResourceState"

wsrp:ResourceProperties="muws-xs:ResourceStateProperties">

 <operation name="Start">

 <input name="StartRequest" message="muws-wsdl:StartRequest"/>

 <output name="StartResponse" message="muws-wsdl:StartResponse"/>

 </operation>

 <operation name="Stop">

 <input name="StopRequest" message="muws-wsdl:StopRequest"/>

 <output name="StopResponse" message="muws-wsdl:StopResponse"/>

 </operation>

 </portType>

 <portType name="Metrics"

wsrp:ResourceProperties="muws-xs:MetricsProperties">

 <operation name="ResetAll">

 <input name="ResetAllRequest" message="muws-wsdl:ResetAllRequest"/>

 <output name="ResetAllResponse" message="muws-wsdl:ResetAllResponse"/>

 </operation>

 </portType>

</definitions>
Appendix E. Web Services Platform

This section briefly describes the Web services platform features that are required in order to specify Management Using Web Services (MUWS), and makes recommendations on the support of each feature. Recommendations made in this section will either:

· Reference another specification to be used to provide the feature
· Identify the feature as something that needs to be provided by the industry in the future
· Identify the feature as something that needs to be defined in a WSDM TC interim specification until such a feature is available for the Web services platform.
Initial Focus

The Web services platform used by this version of MUWS must support the features listed below.
Properties

Properties are describable information that can be queried and may also be set.. Properties, and their associated messages and operations, may be provided by a Web service interface in a schema document. A Property consist of a declaration, or name, and a description, or type. Properies should be introspectable at design-time and at run-time. By using a property schema, it is possible to find, to read, and to write a property.
For manageability, a property is part of the advertised manageability interface for a resource. For manageability, a property can represent configuration values, metrics, identifiers, and so on.
Motivation: Many manageability capabilities of a manageable service concern the resource the manager is able to query and set. This information should be modeled as a set of properties, and their access methods. Note that there is a need for access methods that meet the scalability requirements of management applications, for example ”bulk-get”.
Recommendation: Use the WS-Resource Properties specification [WS-ResouceProperty] to describe the properties of a manageable resource.
Meta Data

Meta data is generally defined as data about data. In the context of management, it is additional descriptive information about the components of a manageability interface. Meta data may apply to the properties, operations, events, and capabilities of the manageability interface, or, meta data may apply to the context, quality, condition, and character of referenced data. Meta data can be introspected at design-time and at run-time.

Motivation: In IT management, meta data is important for:

· describing data in richer ways, and ultimately, to link data with the goals driving the existence of the source of this data, For example, meta data concerning the limitations, purpose, context, quality, and character of management data helps describe how the associated data relates to the objectives of an IT environment
· enabling the interoperability of manageability capabilities, as provided by numerous, different providers
Recommendation: Descriptive information about the manageability interface will be expressed as XML element attributes as a tactical solution for WSDM 0.5. This satisfies run-time introspection, but does not provide for design-time introspection.

A strategic solution will be developed for WSDM 1.0 supporting run-time and design-time introspection. The concept of a qualifier, as described in the DMTF Common Information Model (CIM), and consisting of meta-data concerning a class, property, method, notification or method parameter may be mined for useful ideas for manageability meta-data..
Addressing

An address, or reference, is a data structure referencing a unique Web service. Addressing may be used to reference the Web services of a manageability provider, or, to reference a manageable resource. This data structure must hold sufficient information for a manageability consumer to to locate the Web service and to exchange messages with the Web service. When the referenced Web service provides manageability for several resources, the reference data structure needs to uniquely identify a specific resource. The reference data structure must include data needed to locate the description of its Web service. This enables the manageability consumer to identify the messages understood by the Web service. In this context, address and reference are used synonymously.

Motivation: Manageability consumers need interoperable addressing to reference common manageability services and manageable resources, as a reference for relationships, in notifications and messages.

Recommendation: Use the WS-Addressing specification (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-addressing.asp).

Notification

Notification is a method of conveying information from a source to recipients expressing interest. In terms of Web services, a notification means delivering an XML message from the source to addressable recipients. An interest in receiving notifications must be established with the source by the recipient, or by a third party on behalf of the recipient. When registering interest, the address(es) of the recipient(s) must be provided (see Addressing, above).

Motivation: Manageable resources need to convey information to the managers. In certain cases, it is unreasonable for the manager to explicitly poll (request) the information, and it has to be sent to the manager by the manageable resource. For example, a manager may be interested when a service receives a new message. The manageable resource for the service has to notify the manager when the event occurs. The manageable resource needs to know which manager is interested in which information and the address(es) of the manager in order to send a notification message whenever an event occurs.

Recommendation: Use the WS-Notifications specification [WS-Notification].

Versioning

Version is an attribute of a resource identifying a set of supported capabilities and a sequence of modifications to the component. There are two kinds of versioning; the resource version and the Web service version. The format of the former is out of scope of this work. Version information is useful so that the manager can know if the manageable Web Service interfaces have changed since she obtained her copy.
Motivation: A manager of manageable resources must have the ability to query the available endpoint revisions, along with the corresponding change descriptions allowing that the manager to discern the most appropriate and compatible interface of a particular manageability function that her management client can use.

Recommendation: Addressed by the WSDM TC as part of the “Management of Web Services” (MOWS) specification under development for a Web service. W3C recommendations on this topic [W3C TAG finding on Versioning] must be considered and accomodated. MUWS must provide access to version information as part of the description of the identity property of a manageable resource.

Security

There are many ways to categorize information security, but the most common today are Confidentiality, Integrity, and Authentication. Additional concepts that can be arguably kept separate are: Access Control, Non-repudiation, Availability, and Privacy. [see Glossary TBD] Security requirements within the scope of manageability are not unique to manageability. Every manageability endpoint and many business, or functional, endpoints have similar requirements for confidentiality, integrity, and authentication, as well as for access control, availability, and privacy (see the glossary definition of Security).

Motivation: Resources have to be manageable in a secure way (see the glossary definition of Security). Security infrastructure mechanisms should be composed and layered on top of manageability exposed via Web services, similar to securing any other capability of a resource exposed via a Web service. For example, access to a manageability operation can be granted to only clients that present “manager’s identity” in a request message.
Recommendation: WSDM will follow the recommendation of the OASIS WS-Security TC. For the 1.0 specifications, WSDM should examine WS-Security in order to ensure nothing in the specification precludes the composability of Security. In addition, security should be manageable via Web services.
Registration and Discovery

Registration is a method of advertising the existence of an element so that it can be discovered. Discovery is a method of locating an existing element so that it can be used or operated. Discovery can be based on selection criteria or simply a name or identity of an element. Location is a method of obtaining an address of an element. In the Web services sense, registration, discovery and location can be represented by a set of operations and schema which may be implemented by a Registry.

Motivation: Manageable resources have to be discoverable by the managers. Manageable resources exposed via Web services can be registered, discovered and located via a Registry.

Recommendation: UDDI specification will satisfy most requirements. Existing Web services discovery practices are sufficient.
Future Focus

Future versions of the WSDM TC specifications may also require support from the Web services platform, as follows.
Policy

A Policy is a course of action, a guiding principle, or a procedure that is considered expedient, prudent, or advantageous, for a given condition or event. A Policy describes a broad range of service requirements, preferences, and capabilities.
There are two kinds of policy governing the management of manageable resources. One policy set describes how the client of a manageable resource interacts with the functional interfaces of the resource. An example might be a policy describing the privacy of data., A policy set describing how the manager of a manageable resource establishes operational requirements for a resource. An example might be a policy describing service level agreements.

Motivation: There are various policies that can be specified for manageable resources including: authentication, access control, privacy, non-repudiation, service level agreement, quality of service, routing, content inspection, auditing, and so on. MUWS must leverage existing Web services specifications and technologies in its approach to applying policies to manageable resources. MUWS should endorse a list of such specifications and technologies, and should specify compatibility and interoperability requirements.

Recommendation: None at this time.

Name Resolution

Name Resolution is necessary for management purposes and requires a name resolution service. The name resolution service accepts a name identifier (URI) of a resource and returns an address or reference to the manageability endpoint for the resource. The service should return sufficient information to invoke the manageability endpoint. . The name resolution service may be used to resolve names to references that are meaningful within other application domains, and unrelated to management. One example would be service discovery.
Motivation: A name resolution service is necessary for manageability because manageable resources and manageability services expose many identifiers provided by existing instrumentation and technologies. A manageability consumer needs the ability to get a reference to any resource identifier, within any application domain, with which it wishes to interact..

Recommendation: None at this time.

Transaction

A “unit of work” that consists of multiple actions, typically an ordered set operation, that is applied to a single resource, or applied to multiple resources. The “unit of work” should be executed once and only once, even if, due to transmission failures or other errors, some request within the transaction is received multiple times. There are three possible results from the execution of a transaction:
· all actions against all resources succeed
· one or more actions fail, and all actions against all resources are rolled back.
 Note: if roll back is not possible, or not supported, then the resource state should revert to some known-as-good operational state or configuration.
· one or more actions may fail, and the resource states are left as affected.
Motivation: Grouping actions against resources and assuring their execution is of great value in managing the resources. A manager may request that multiple actions or operations be performed as a single “unit of work” preserving the integrity of the resources involved.

 Recommendation: None at this time.

Flow

Flow, more often called workflow or workflow management, is the management of business processes using information technology. When an organization defines, analyzes, and organizes its resources and operations, workflow management systems can ensure the right information reaches the right person, or computer application, at the right time. Business process management (BPM) workflow or execution languages support the composing services into more complex processes which may also be exposed as a Web service. The description of such coordinated activities should include,, but should not be limited to:

· constructs for the identification of partners
· message correlation
· fault detection and compensating activities
· parallel and serial execution of services
Motivation: Web services orchestration languages may be useful tools allowing Web services management providers to support the more complex business oriented actions that can be taken as a result of observations. A manageability interface may need to be defined for a business process engine to properly and consistently monitor and control flows, and, for a composite Web service that exposes the sessions and the state of a resource and any subordinate resource,.

Recommendation: None at this time.

Negotiation

Negotiation is the process by which two services dynamically negotiate the terms of a contract. A contract is negotiated by the initiators and the participants of that contract. A contract is a document that represents a set of objectives assigned to a set of resources.

Motivation: It is important for resources to understand what they can expect from other resources, from managed resources, from management services, and from managers. The process of negotiation enables initiators and participants to better describe their own level of performance and how information shall be exchanged between the components of federated deployments.
Recommendation: None at this time.

cd-wsdm-muws-05

Copyright © OASIS Open 2003-2004. All Rights Reserved.

Page 17 of 41

