WSIA/WSRP Joint Interfaces Specification

OASIS WSIA/WSRP Joint Interfaces/Metadata Subcommittee

Last updated: 2002-05-08 DRAFT 0.3

1. Introduction

This specification provides an informal straw man interface for the joint WSIA/WSRP interfaces subcommittee. It is based on the embedded use case requirements gathered in the WSIA and WSRP committees and on the concrete proposals to both committees.

The interface provided here is a broad sketch, as a starting point for discussions , and is probably full of inconsistencies, awkwardness, and plain bugs. Open issues like stateless vs. stateful Web Services, optionality of operations, transient and persistent state, and the general flow of the invocations are discussed briefly but not dealt with in depth.

2. Lifecycle Interfaces

instanceHandle = createInstance(propertyValues, templateKey);

This operation provides means for the Consumer to create an instance of the Producer.

Note: The instance handle returned by this operation represents a transient state (e.g. within the user “session”, and not between user sessions).

Note: It is assumed that if instantiation of a Producer requires a handle to persistent information, this information is passed as property values. Is this right? Should this be more explicit? If it does pass as property values, should these be “standard” properties?

The templateKey argument is optional (null may be passed) and represents a template - a set of pre-set properties – which is stored by the producer. The template concept reflects current thinking in the WSRP committee concerning persistent properties.

The Consumer may pass propertyValues to initialize the new instance. If the Producer and the Consumer do not require any initialization, null may be passed.

The instanceHandle (an opaque xsd:string) is used in all subsequent messages to identify this instance. The instanceHandle can be a null string, indicating that the Producer is a stateless WSIA service (see later).

destroyInstance(instanceHandle)

This operation provides a means for the Consumer to destroy the instance, in which case the Producer may dispose of the resources for that instance and invalidate the handle.

The Producer should be aware that in some cases the Consumer may not invoke destroyInstance (for example, if the Consumer application is abruptly terminated by the user) and should implement a destruction mechanism based on a timeout.

Note: Should these operations be optional for a stateless service? They can be, as stateless services will always return null. If they are, it will make things simpler for the Consumer (which will only have to call performAction).

templateKey = createTemplate(instanceHandle, propertyValues);

This operation provides means for the Consumer to create a template where the Producer stores a persistent set of propertyValues for use when creating later instances.

Note: We will need to define how a Producer indicates which properties it is willing to store persistently as a template.

The instanceHandle argument is optional (null may be passed) and represents a request to use the propertyValues of the instance (after modification using the supplied values) for the values to persist in the template.
The templateKey (an opaque xsd:string) may be used in subsequent createInstance() invocations. The templateKey may be null, indicating that the Producer is unwilling to persist any of the supplied propertyValues as a template.

destroyTemplate(templateKey)

This operation provides a means for the Consumer to destroy a persistent template, in which case the Producer may dispose of the resources for that template.

3. Presentation and Action Routing

documentFragment = getFragment(instanceHandle,
 propertyValues,

 uniqueToken,
 controllerURL)

This operation returns a document fragment corresponding to the Producer’s current state. It is assumed that the document fragment is structured in a way that facilitates integration into a larger document and composition with other document fragments into a larger document.

Note: The mechanism with which the document fragment is created to facilitate composition into a larger document should be discussed in the markup subcommittee.

All “multi-page” user actions that require routing through the Consumer should point to the provided controllerUrl, replacing the string (action) with an opaque URL-encoded action string (see below).

The uniqueToken is generated by the Consumer and passed to the producer in order to “namespace” the global objects in the fragment (e.g. XML Ids, JavaScript functions and variables). The uniqueToken must begin with an alpha (Latin!) character and include only alphanumeric characters.

Note: The unique token (and many other arguments) can be passed as a standard property and not as an argument. What is the guideline for deciding between the two? These guidelines should be decided in the WSDL Sub-committee.

The new values provided in the propertyValues are assumed to be processed prior to generating the presentation. If the Producer implements the setProperties operation, it is required that the semantics be identical to a separate invocation of setProperties prior to invoking getFragment.

This operation is optional and may not exist in the Web Service signature – the Producer may return the document fragment as part of the invocation of the performAction operation, below

Note: Should this operation be optional? It is defined to be optional to accommodate stateless Producers which cannot support pair getFragment/performAction pair invocations. The fact that this operation is optional means that the Consumer must sometimes generate different code for stateless and stateful services, which may be OK for a specific Consumer, but will make writing a generic Consumer more complicated.

 (instanceHandle, propertyValues, documentFragment) =

 performAction(instanceHandle,
 propertyValues,
 action,
 actionData,

 controllerURL,
 uniqueToken,
 propertyNames);

This operation allows the Consumer to route an opaque (xsd:string) action to the Producer.

The action is assumed to have been generated by a previous invocation of the getFragment operation. If the Producer is stateless, a null action can be passed on the first invocation.

actionData is an opaque string submitted by the user when generating the action (i.e., the HTTP entity).

The new values provided in the propertyValues are required to be processed prior to applying the action. If the Producer implements the setProperties operation, it is required that the semantics be identical to a separate invocation of setProperties prior to invoking performAction. Conceptually, a stateless Producer surfaces the same operations, but requires the Consumer to send the full set of properties on each invocation. Of course, it is also giving up any capability to store private state information between these calls.
This operation may return a documentFragment (otherwise, null is returned). In such a case, it is required that the semantics be identical to a separate invocation of getFragment immediately following the invocation of performAction.

This operation may return a new instanceHandle (otherwise, null is returned) to accommodate Web Services that transition from statelessness to statefulness.

This operation may return propertyValues of the properties defined by propertyNames. If the Producer implements the getProperties operation, it is required that the semantics be identical to a separate invocation of getProperties after invoking performAction.
Note: Browser operations like “Refresh” and opening a bookmark generate weird scenarios in which the Consumer will (if not careful) generate performAction twice with the same action. Is this allowed? What is it’s meaning? Will making getFragment non-optional solve this? If so, how will the Consumer know not to re-performAction? These are (some) of the open issues behind Presentation and Action Routing operations

4. Transient State

The following operations are applicable only to stateful Producers, namely: Producers that returned a non-null response in the createInstance operation.

propertyValues = setProperties(instanceHandle,
 propertyValues);

This operation allows the Consumer to set the transient state of the Producer.

The operation returns PropertyValues describing the properties that were modified. The returned propertyValues may be a superset and/or a subset of the supplied propertyValues.

This operation is optional and may not exist in the Web Service signature – in which case the Producer implicitly refuses to store property values as part of its state.

Note: Should this operation be optional? It is defined to be optional to accommodate stateless Producers which cannot support setProperties invocations. The fact that this operation is optional means that the Consumer must sometimes generate different code for stateless and stateful services. This needs to be further discussed by this subcommittee.

propertyValues = getProperties(instanceHandle,
 propertyNames);

This operation allows the Consumer to get the transient state of the Producer.

The Consumer may specify the list of Properties for which property values are required. Otherwise, the complete list of relevant property values is returned.

This operation is optional and may not exist in the Web Service signature – in which case the Producer implicitly refuses to return property values.

A property name may include names in XPath syntax (if the property value is XML), which enables the Consumer to retrieve subsets of the value.

Note: Should this operation be optional? It is defined to be optional to accommodate stateless Producers which cannot support getProperties invocations. The fact that this operation is optional means that the Consumer must sometimes generate different code for stateless and stateful services. This needs to be further discussed by this subcommittee. Should this operation “comes and go” with setProperties()]

Note: The XPath Syntax should be determined at a later stage by this subcommittee.

4. Description

serviceDocument = getServiceDocument();

This operation provides the means to request the specific WSDL Service description document for the bound service. While this may often be located through a UDDI search, this operation provides a well-defined means for locating the WSDL for this particular service regardless of how it was located.

Note: If the interface must conform to the above, then the WSDL document is not needed. If, on the other hand, the interface we define is likely to only be the base interface, then further investigation of extensibility of the interface, and the ability of the Producer to define methods that are not part of this interface should be discussed (by this subcommittee? By the WSDL subcommittee?).

retValue = hasCapability(capability);

capability = {“getFragment”, “performAction”, “setAndGetProperties”, “XPathInPropertyNames”}

The ability to check which capabilities can be invoked on the Web Service. While this sometimes may be directly inferred from the WSDL, it is difficult, while the information provided is needed by the Consumer for correct interaction with the Producer. In some cases, like xpathInGetProperties, this is not inferred from the WSDL.

Note: The WSXL proposal defined this by using WSDL portTypes. The correct method for capability/interface description should be defined by the WSDL subcommittee. The fact that there exist optional capabilities means that the Consumer must sometimes generate different code for stateless and stateful services. This needs to be further discussed (by this committee? By the WSDL committee?)

propertySchema = getPropertySchema();

The list of Properties supported by the Producer is defined as part of the Producer meta-data. The Property List is defined using an associated XML Schema document.

Allowed schema documents for Properties must be of a specific structure to facilitate easy management by Consumer tools. The schema must represent a list of name/value pairs, each of which can be of an arbitrary type. Each Property is also associated with a URI that defines its category.

Note: The exact structure of the Schema should be determined at a future date ((by this subcommittee? By the WSDL subcommittee?)

OASIS WSIA/WSRP Joint Committee

Page 6 of 6

