WSIA/WSRP Joint Interfaces Specification

OASIS WSIA/WSRP Joint Interfaces/Metadata Subcommittee

Last updated: 2002-05-08 DRAFT 0.43

1. Introduction

This specification provides an informal straw man interface for the joint WSIA/WSRP interfaces subcommittee. It is based on the embedded use case requirements gathered in the WSIA and WSRP committees and on the concrete proposals to both committees.

The interface provided here is a broad sketch, as a starting point for discussions, and is probably full of inconsistencies, awkwardness, and plain bugs. Open issues like stateless vs. stateful Web Services, optionality of operations, transient and persistent state, and the general flow of the invocations are discussed briefly but not dealt with in depth.

2. Lifecycle Interfaces
[GT]Requirement From Lifecycle

[GT]Requirement: enable Producers to access internal information of a certain scope and lifetime (e.g. information relevant between pages of the same session, or information relevant between sessions).

[GT]Because WSIA/WSRP are connectionless interfaces (as all SOAP interfaces are), the Producer must be able to return information to the Consumer, with the understanding that this information will be sent back to it (and possibly other Producers). Three types of such information exist (which vary by scope and lifetime):

[GT]Types of Information

1. User Transient information. Information whose lifetime is the “user session”, and whose scope is the user. This information is returned by the Producer which it expects to get it back in all operations that occur within this user’s session.

Example: The page the user is in. The row in the table the user scrolled to. In essence, any information stored in App Server “session” objects.

2. Shared Transient Information. Information whose lifetime is the “user session”, and whose scope is a set of Producers inside a certain Consumer. The definition of what is such a set of Producers is WSRP-specific, and is not in the domain of WSIA. WSRP has yet to commit to these sets.

Examples:

a. Portlets coming from the same “portlet container”.

b. Portlets whose users are from the same role.

Example: The connection pool to use.

3. Persistent Information. Information whose lifetime is between “user sessions”, and whose scope is the user.

Example: The search string did the user use last (for form pre-fill).

In summary:

	
	Lifetime
	Scope

	#1 – User Transient Information
	session
	user

	#2 – Shared Transient Information
	session
	unspecified set of Producers

	#3 – Persistent Information
	between sessions
	user

Note that the above indicates neither the mechanism nor the amount of information to be passed between Producer and Consumer.

[GT]Information Passing Mechanisms

It was agreed that all information is always passed only between one Producers and one Consumer
, never directly between Producers. Even when the information is shared (type #2 above), the “mediator” of this sharing is the Consumer. Because of this, the mechanism will boil down to one of the following:

a. A specific argument passed and returned by all operations (per type). For example:

2. createInstance
 will return a string, which will be sent in all operations.

3. A pre-defined property (per type). For example:

a. Consumer will call getProperties(“wsrp-shared-per-container-info”) for the first portlet created in the scope. It will use the value for a setProperty for all portlets in that scope.

Note that it is not necessary for all types to have the same mechanism.

[GT]Amounts of Information
The amount of information that can be sent can be:

a. One information (per type). This would typically not be the information itself, but more of a “key”/”handle”/”opaque string” type of thing. For example:

2. createInstance will return a handle, or maybe all operations can return that handle (implicitly).

3. An arbitrary amount of information (this would be relevant only if we are talking about information passing mechanism #1). For example:

a. Metadata about the property will define its type, which the Consumer MUST pass use the setProperty/getProperty process outlined above.

Note again that the amount need not be the same for all types of information.

[GT]Terminology

1. A proposal for names for the above types of information:

2. Session Information.
3. X Shared Session Information, where X stands for the name of the set of Producers (e.g. Portlet Container Shared Session, Administrators Shared Session)
4. Persistent Information.
A proposal for the “thing” which is “created” and “got the markup from: Manifestation.

Operations

templateKey = createTemplate(propertyValues);

This operation provides means for the Consumer to request the Producer to create a template which stores a persistent set of propertyValues for use when creating later instances.

Note: We will need to define how a Producer indicates which properties it is willing to store persistently as a template.

[GT]Note: The consumer can always persist the information themselves by saving whichever property values it needs, and using createInstance with those propertyValues it persisted. Thus, the concept of a Producer-side persistent instance may not be needed, although allowed by WSIA in the case a Producer would like to expose such capabilities.

The templateKey (an opaque xsd:string) may be used in subsequent createInstance() invocations. The templateKey may be null, indicating that the Producer is unwilling to persist any of the supplied propertyValues as a template.

destroyTemplate(templateKey)

This operation provides a means for the Consumer to destroy a persistent template, in which case the Producer may dispose of the resources for that template.

instanceHandle = createInstance(propertyValues, templateKey);

This operation provides means for the Consumer to create an instance of the Producer.

Note: The instance handle returned by this operation represents a transient state (e.g. within the user “session”, and not between user sessions).

The templateKey argument is optional (null may be passed) and represents a template - a set of default properties – which is stored by the producer. The template concept reflects current thinking in the WSRP committee concerning persistent properties.

The Consumer may pass propertyValues to initialize the new instance. If the Producer and the Consumer do not require any initialization, null may be passed.

The instanceHandle (an opaque xsd:string) is used in all subsequent messages to identify this instance. The instanceHandle can be a null string, indicating that the Producer is a stateless WSIA service (see later).

destroyInstance(instanceHandle)

This operation provides a means for the Consumer to destroy the instance, in which case the Producer may dispose of the resources for that instance and invalidate the handle.

The Producer should be aware that in some cases the Consumer may not invoke destroyInstance (for example, if the Consumer application is abruptly terminated by the user) and should implement a destruction mechanism based on a timeout.

Note: Should these operations be optional for a stateless service? They can be, as stateless services will always return null. If they are, it will make things simpler for the Consumer (which will only have to call performAction).

templateKey = createTemplateFromInstance(instanceHandle, propertyValues);

This operation enables the Consumer to create a template from an existing instance, using the property values of the instance, after overriding it using the supplied values.

[RT]Note: There seemed to be such a disconnect on the two above questions that Thomas Schaeck & I spent some time trying to understand the differences between the portal and OO perspectives. Major conclusions:
1. The word “instance” has very distinct and very different meanings to the two communities. To the OO community this refers to a transient object instantiated, used and discarded during the execution of an application (currently the meaning in this document). To the portal community, instance is used to describe the configured ‘instance’ of a portlet that has been placed on a page regardless of whether that page is currently active. This is a much different scope (hence the disagreement regarding persistence) than the OO concept. Our recommendation is to find a different term that does not bring up such different concepts within our respective communities.

3. While there may be hierarchies of persistent information in the deployment of a service (eg. The RPWS submission from IBM uses 2; top level persistently identifies the Portal to the Portlet Service while the second identifies a set of persistent information for use when interacting with a particular portlet), there is no way we will be able to force particular deployment schemas (what about collections within a service that share information …). The beginning of the discussion we need to have in this area are in the section below entitled “Heterogeneous vs. Homogenous Web Services”. Our preference would be to use the URL pattern matching that is typical of Application Servers today to allow the Consumer to discover/interact with the actual deployed hierarchy (eg. persistent info at http://www.PortletService.com/ relates to the service while persistent info at http://www.PortletService.com/WeatherPortlet relates to a particular portlet). This allows exploitation of the WSDL deployment information for the portlet (is visible at its own URL), but likely has implications to the metadata that should be published to directories (such as UDDI).
- Our suggestions:

 1. rename createTemplate() to createPersistentKey() … returns a ‘Key’
 2. rename createInstance() to createTransientHandle() … returns a ‘Handle’

 3. have getFragment()/performAction() both take and potentially return a ‘SessionID’

[GT]Note: This document currently uses templateKey and instanceHandle, respectively. This document represents OO thinking, whereby a user of a class “instantiates” a class, and receives a reference to an instance of it (in our case, the instanceHandle), through which all operations pass through (i.e. by calling a method). In the end, the user of the class destroys it to indicate that the resources used by this instance can be freed.

[GT]Note: An OO instance is alive only during the running of the program using it. To use the same “instance” between runs of a program, one persists the instance to a store during the first run, and retrieves the instance from the store during the second run.

 [GT]Heterogeneous vs. Homogenous Web Services

How can a Producer expose different types of Web Services (e.g. exposing a Stock Quote WSIA service and a Weather WSIA service)?

1. Use standard HTTP/WSDL mechanisms for differentiating between Web Services. These standard mechanisms usually differentiate each Web Service by it’s path, although it can be differentiated by port number, domain name, and even by URL parameter.

a. Example: Each Web Service and any hosting service will have different end points.

i. http://www.producer.com/wsia/

ii. http://www.producer.com/wsia/stockquotes

iii. http://www.producer.com/wsia/weather

b. When creating a SOAP service using today’s application servers, this is the methodology used to differentiate between them.

2. Add a “class” argument to createInstance and createTemplate. This enables the Web Service to “switch” based on this class and create instances of different classes.

a. Example: when creating the instance, the Consumer will:

i. createInstance(“StockQuotes”, null, null);
ii. createInstance(“Weather”, null, null);
b. Terminology-wise, how will we call this “class”? It cannot be called Web Service, because Web Services today are differentiated by end points (e.g. by the mechanisms defined in #1).

c. The above terminology problem hints on the fact that we are creating a “Web Services” within a Web Service instead of relying on standard Web Services paradigms for invoking Web Services.

d. Also, because of stateless Producers, and the need for “static” (per-class) operations, this “class” argument will have to be added to all WSIA/WSRP operations.
3. Variation on #2: define a standard property (“WSIAClass”?) which is used by the Producer to create the appropriate instance.

a. Example: when creating the instance, the Consumer will:

i. createInstance({“WSIAClass”, “StockQuotes”});
ii. createInstance({“WSIAClass”, “Weather”});
[GT]Use Case A – Using Only createInstance/destroyInstance
1. End user navigates (using a Browser) to a page of the Consumer’s that includes a WSIA/WSRP Service A.

2. The Consumer creates an instance of Web Service A by invoking createInstance on A’s endpoint.

3. The Consumer saves the instanceHandle where it can access it during the End user’s session (usually, this would be in the Consumer’s session object, but the usual Hidden Fields/Session on URL methods also apply).

4. The Consumer invokes getFragment using this instanceHandle, and writes it into the page.

5. The End user clicks on a link, and navigates to another Consumer page.

6. The Consumer retrieves the instanceHandle, and invokes getFragment (or possibly performAction) again on the same instance.

7. If the user closes the browser, then that’s that – the instance on the Producer side times out. If the user logs out of the Consumer, then the Consumer can call destroyInstance on the instance it has.

[GT]Use Case B – Also using createTemplate/destroyTemplate
1. An End user decides to add a portlet to their portal page. They choose Service A. Using the description of the properties, the Portal displays the list of persistable properties to the End user, which may fill values in them.

2. Consumer invokes createTemplate with those property values, and stores the templateKey wherever the End User preferences are stored.

3. When the End user navigates (using a Browser) to a page of the Consumer’s that includes a WSIA/WSRP Service A, the portal will create an instance of Web Service A by invoking createInstance on A’s endpoint, this time passing the templateKey save earlier to it.

4. The rest is the same as in Use Case A.

5. If the End User decides to remove that portlet from its page, the portal invokes destroyTemplate on the previous templateKey.

[GT]Use Case C – Use createTemplateFromInstance

An alternative to Use Case B would be for the portlet itself to show a page enabling the end user to customize it.

1. An End user decides to add a portlet to their portal page. They choose Service A.

2. The End user navigates to the page including the portlet. The portal instantiates the portlet/WSIA service using createInstance, as defined in Use Case A.

3. The End user decides to “customize” the portlet and clicks on the “customize” widget of the portlet. By an unspecified method (standard WSRP action?), the End user navigates to the “customization view” of the portlet (still inside the portal page!).

4. The end user customizes the portlet using the portlet-produced customization page, and clicks on “Save”.

5. By an unspecified method (standard WSRP actions?), the portal “knows” that the user has finished customization, and calls createTemplateFromInstance on this instance.

6. This key will be used henceforth to create instances of this portlet for the specific user, as shown in Use Case B.

3. Presentation and Action Routing

documentFragment = getFragment(instanceHandle,
 propertyValues,

 uniqueToken,
 controllerURL)

This operation returns a document fragment corresponding to the Producer’s current state. It is assumed that the document fragment is structured in a way that facilitates integration into a larger document and composition with other document fragments into a larger document. [mm1: Is it possible that the fragment is the only document?]
Note: The mechanism with which the document fragment is created to facilitate composition into a larger document should be discussed in the markup subcommittee.
[RT]Note: It may be useful to define an implicit lifecycle where getFragment can return an instanceHandle.
All “multi-page” user actions that require routing through the Consumer should point to the provided controllerUrl, replacing the string (action) with an opaque URL-encoded action string (see below).

The uniqueToken is generated by the Consumer and passed to the producer in order to “namespace” [mm1 identify? Or provide context to?] the global objects in the fragment (e.g. XML Ids, JavaScript functions and variables). The uniqueToken must begin with an alpha (Latin!) character and include only alphanumeric characters.
Note: The unique token (and many other arguments) can be passed as a standard property and not as an argument. What is the guideline for deciding between the two? These guidelines should be decided in the WSDL Sub-committee.

The new values provided in the propertyValues are assumed to be processed prior to generating the presentation. If the Producer implements the setProperties operation, it is required that the semantics be identical to a separate invocation of setProperties prior to invoking getFragment. [mm1: Please explain for all instances of this statement.]
This operation is optional and may not exist in the Web Service signature – the Producer may return the document fragment as part of the invocation of the performAction operation, below

Note: Should this operation be optional? It is defined to be optional to accommodate stateless Producers which cannot support pair getFragment/performAction pair invocations. The fact that this operation is optional means that the Consumer must sometimes generate different code for stateless and stateful services, which may be OK for a specific Consumer, but will make writing a generic Consumer more complicated. [mm1: Should we discuss conditions where this would be true?]
 (instanceHandle, propertyValues, documentFragment) =

 performAction(instanceHandle,
 propertyValues,
 action,
 actionData,

 controllerURL,
 uniqueToken,
 propertyNames);

This operation allows the Consumer to route an opaque (xsd:string) action to the Producer.

The action is assumed to have been generated by a previous invocation of the getFragment operation. If the Producer is stateless, a null action can be passed on the first invocation.

actionData is an opaque string submitted by the user when generating the action (i.e., the HTTP entity).

The new values provided in the propertyValues are required to be processed prior to applying the action. If the Producer implements the setProperties operation, it is required that the semantics be identical to a separate invocation of setProperties prior to invoking performAction. Conceptually, a stateless Producer surfaces the same operations, but requires the Consumer to send the full set of properties on each invocation. Of course, it is also giving up any capability to store private state information between these calls.

This operation may return a documentFragment (otherwise, null is returned). In such a case, it is required that the semantics be identical to a separate invocation of getFragment immediately following the invocation of performAction.

This operation may return a new instanceHandle (otherwise, null is returned) to accommodate Web Services that transition from statelessness to statefulness. [mm1: For lifecycle (or some relationship between different instanceHandle), do we have some key that associates them (Web Service-Stateless; Web Service-Stateful)? I ask this because if a web service transitions (state), could there be any dependencies that exist? If we assume not, its activities in each state are completely independent.]
This operation may return propertyValues of the properties defined by propertyNames. If the Producer implements the getProperties operation, it is required that the semantics be identical to a separate invocation of getProperties after invoking performAction.

Note: Browser operations like “Refresh” and opening a bookmark generate weird scenarios in which the Consumer will (if not careful) generate performAction twice with the same action. Is this allowed? What is it’s meaning? Will making getFragment non-optional solve this? If so, how will the Consumer know not to re-performAction? These are (some) of the open issues behind Presentation and Action Routing operations [mm1: Use conditions or constraints as a mechanism, or are they tagged as executed during a given session?]
[GT]Use Case A – TBD

[TBD]

4. Transient State

The following operations are applicable only to stateful Producers, namely: Producers that returned a non-null response in the createInstance operation.

propertyValues = setProperties(instanceHandle,
 propertyValues);

This operation allows the Consumer to set the transient state of the Producer.

The operation returns PropertyValues describing the properties that were modified. The returned propertyValues may be a superset and/or a subset of the supplied propertyValues.

This operation is optional and may not exist in the Web Service signature – in which case the Producer implicitly refuses to store property values as part of its state.

Note: Should this operation be optional? It is defined to be optional to accommodate stateless Producers which cannot support setProperties invocations. The fact that this operation is optional means that the Consumer must sometimes generate different code for stateless and stateful services. This needs to be further discussed by this subcommittee. [mm1: See previous comments on conditions or constraints, and lifecycle.]
propertyValues = getProperties(instanceHandle,
 propertyNames);

This operation allows the Consumer to get the transient state of the Producer.

The Consumer may specify the list of Properties for which property values are required. Otherwise, the complete list of relevant property values is returned.

This operation is optional and may not exist in the Web Service signature – in which case the Producer implicitly refuses to return property values.

A property name may include names in XPath syntax (if the property value is XML), which enables the Consumer to retrieve subsets of the value.

Note: Should this operation be optional? It is defined to be optional to accommodate stateless Producers which cannot support getProperties invocations. The fact that this operation is optional means that the Consumer must sometimes generate different code for stateless and stateful services. This needs to be further discussed by this subcommittee. Should this operation “come and go” with setProperties()]

Note: The XPath Syntax should be determined at a later stage by this subcommittee.

[GT]Use Case A – TBD

[TBD]

4. Description
Does WSIL obviate the need for these operations?
serviceDocument = getServiceDocument();
This operation provides the means to request the specific WSDL Service description document for the bound service. While this may often be located through a UDDI search, this operation provides a well-defined means for locating the WSDL for this particular service regardless of how it was located.

Note: If the service provides access to a heterogenous set of objects, this operation may need to take an instanceHandle or class name.

Note: For the case of the heterogeneous case, how does a Consumer get information about the set of objects that can be instantiated? What about metadata for the service itself?

Note: If the interface must conform to the above, then the WSDL document is not needed. If, on the other hand, the interface we define is likely to only be the base interface, then further investigation of extensibility of the interface, and the ability of the Producer to define methods that are not part of this interface should be discussed (by this subcommittee? By the WSDL subcommittee?).

retValue = hasCapability(capability);

capability = {“canCreateTemplates”, “canCreateTemplatesFromInstances”, “setAndGetProperties”, “XPathInPropertyNames”}
The ability to check which capabilities can be invoked on the Web Service. While this sometimes may be directly inferred from the WSDL, it is difficult, while the information provided is needed by the Consumer for correct interaction with the Producer. In some cases, like xpathInGetProperties, this is not inferred from the WSDL.[mm1: What about “enabled” and “available” – qualifications on service.]
Note: If the service provides access to a heterogenous set of objects, this operation may need to take an instanceHandle/class name.

Note: For the case of the heterogeneous case, how does a Consumer get information about the set of objects that can be instantiated? What about metadata for the service itself?

Note: The WSXL proposal defined this by using WSDL portTypes. The correct method for capability/interface description should be defined by the WSDL subcommittee. The fact that there exist optional capabilities means that the Consumer must sometimes generate different code for stateless and stateful services. This needs to be further discussed (by this committee? By the WSDL committee?)
Note: Is this operation needed … would this information be available through the WSDL document? If this is done via WSDL, would this require unique proxies?
propertySchema = getPropertySchema();
The list of Properties supported by the Producer is defined as part of the Producer meta-data. The Property List is defined using an associated XML Schema document.

Note: If the service provides access to a heterogenous set of objects, this operation may need to take an instanceHandle or class name.

Note: For the case of the heterogeneous case, how does a Consumer get information about the set of objects that can be instantiated? What about metadata for the service itself?

Allowed schema documents for Properties must be of a specific structure to facilitate easy management by Consumer tools. The schema must represent a list of name/value pairs, each of which can be of an arbitrary type. Each Property is also associated with a URI that defines its category. [mm1: If the properties can be extended, you could use what I have seen before – abstract types and/or elements. In the case you describe an element that has a name but the context of that object is defined by the business relationship (and the namespace). For example, additionalProperty is defined dynamically by the context of the interaction. I have also seen, using XML schema, where the “list” is bounded by namespace.]
Note: The exact structure of the Schema should be determined at a future date ((by this subcommittee? By the WSDL subcommittee?)
Note: Is this operation needed … would this information be available through the WSDL document?
[GT]Use Case A – TBD

[TBD]

� Information concerning the interface. If portlets inside an app server/JVM want to share information/resources between them without the Consumer knowing about that, then this should not be reflected in the interface.

� Or whatever we choose to call the thing… (

OASIS WSIA/WSRP Joint Committee

Page 2 of 13

