
Integrating Distributed End-User Experiences

Property-oriented approach to Producer customization:
Lifecycle of customizing and invoking a Producer

Producer

Generates

Instantiation: from Template or Instance, create transient
state with Consumer-applied property settings

Request Output

Invoke user Action (opaque arguments)

Consumer receives Producer-determined property side-
effects as return value from Action

Consumer computes its own side effects

Consumer applies property changes across all Producers in
order determined by graph of property dependencies

Request Output...

Property
interface

Output
interface

Action
interface

Sets

Action
implementations

Integrating Distributed End-User Experiences

Example: Initializing data in Health Insurance Personal Profile Scenario

Producer

Producer’s properties

PatientName, Age, Address,
SocialSecurity, Diagnosis

Consumer

Consumer’s properties

UserName, SocSecNum,
ICD9

1

2Consumer’s bindings

P.PatientName = UserName
P.SocialSecurity = SocSecNum
ICD9 = P.Diagnosis

Integrating Distributed End-User Experiences

Example: Consumer propagates values between a Producer‘s properties

Producer

Producer’s properties

Prop x, y

Consumer

Consumer’s properties

Prop a, b
2

3

4Consumer’s bindings

a = P.x
b = f(a)
P.y = b

1

Integrating Distributed End-User Experiences

Example: The Memory Configurator and Availability scenarios

ProducerConsumer writes bindings between its properties
and Producer properties
Bindings use a generalized XFORMS notation to
define dependencies, and optionally calculations,
between properties:

Consumer‘s manufacturer-part-num property is equal
to the Producer‘s manufacturer part number column
Consumer computes its reseller-part-num from its
manufacturer-part-num property
Producer‘s „user defined“ column is equal to the
Consumer‘s reseller-part-num column

Cross-dependencies assure Consumer is passed
Producer part numbers to generate reseller numbers
before output is generated.
Producer has no a-priori knowledge of reseller
numbers, or how to correlate them - totally generic
column is used for this.

Producer’s properties

•Product table with columns:
•manufacturer number
•color
•price
•user defined column

Integrating Distributed End-User Experiences

Example: The Memory Configurator and Availability scenarios

Producer

Producer’s properties

•Product table with columns:
•manufacturer number
•color
•price
•user defined column

Consumer

Consumer’s properties

•Reseller correlation table:
•manufacturer number

•reseller number

2

3

4

performAction

getOutput

Consumer’s bindings

Man_number = P.table.manufacturer_number
resell_number = lookup(Man_number)
P.table.user-defined-column = resell_number

1

Integrating Distributed End-User Experiences

Propagating values across Producers, a.k.a. Coordination
Example: Indy car driver scenario

Live Indy Producer P

P’s properties
AllDrivers, CurName, Pos, LapTime

ESPN Consumer

Consumer’s properties

NumRacers, FastestLapTime

2

3

4

Consumer’s bindings

NumRacers = count(P.AllDrivers)
FastestLapTime = max(P.LapTime)

Q.Name = P.CurName
Q.Position = P.Pos

P.CurName = Q.Name
P.Pos = Q.Position

P’s bindings
Pos ~ CurName
LapTime ~ CurName
CurName ~ AllDrivers

Driver Profile Producer Q

Q’s properties
Name, Position

Q’s bindings

Position ~ Name
Name ~ Position
PositionPct ~ (Name, Position)

performAction

1

getOutput

Integrating Distributed End-User Experiences

Backup

Integrating Distributed End-User Experiences

“Correlating” Producer and Consumer properties

Producer

Generates

Scenarios: Knowledge of whether and how properties
are related is split between Producer and Consumer

Examples:
Producer determines manufacturer part numbers,
Consumer correlates with reseller numbers
Producer determines manufacturer part numbers,
Consumer determines availability (column of
booleans or first available ship dates)

Required infrastructure support:
How to determine where there are Producer-
Consumer interdependencies, and hence multiple
passes to the Producer are required?
Approach: Export property-to-property constraints
from Producer to Consumer to support automated
derivation of the update propagation sequence.

Property
interface

Output
interface

Action
interface

Sets

Action
implementations

Integrating Distributed End-User Experiences

Business Scenarios and Use Cases
www.oasis-open.org/committees/wsia/scenarios/index.shtml

Embedded
Consumer places the Producer’s presentation web services inside a container as side-
by-side independent applications.

Customized
Model: Consumer sets Producer default values, restricts Producer types

View: Consumer alters look and feel styling, adds/deletes elements of Producer’s view

Control: Consumer intercepts Producer actions

Coordinated
Consumer integrates multiple Producers into a single user experience by wiring
together their data and presentation states.

Integrating Distributed End-User Experiences

Business Scenarios and Use Cases
www.oasis-open.org/committees/wsia/scenarios/index.shtml

Customized
Model: Consumer
sets Producer default
values, restricts
Producer types

View: Consumer
alters look and feel
styling, adds/deletes
elements of
Producer’s view

Control: Consumer
intercepts Producer
actions

Integrating Distributed End-User Experiences

Scenario: Customization

Universal Bank wants to make the Loan Risk Applications of its
subsidiaries available for use by its Loan Officers worldwide, without
requiring central IT to become involved as the applications evolve
The subsidiaries deploy their applications as WSIA services or wrap
them externally.
Universal Bank central IT develops the Loan Risk Workbench, which
interacts with the Loan Officer, selects the right Loan Risk application,
invokes it with the right parameters, and captures the return data

Loan Officers Universal Bank
application Applications to be integrated

Loan
Risk

Workbench

WSIA
Client

(Proxy)

Registry

 Pub loan risk

 Tourist hotel loan risk

 Car dealer loan risk

(Intranet)

WSIA
Service

(Wrapper)

WSIA
Service

(Wrapper)

WSIA
Service

(Wrapper)

Integrating Distributed End-User Experiences

XFORMS-based approach to customization

WSIA Application

WSIA Runtime

HTTP
(SOAP)

HTTP
(HTML)

Users

Stock
Application

Consumer

Application

WSIA
Proxy

Producer

Generates/
binds

Data model
(Schema)

Data values
(Instance)

Validates

Producer
specific
operations

Integrating Distributed End-User Experiences

Model customization: Setting Data Values (instance)

Producer

Generates

Data values
(Instance)

Consumer supplies initial data values
for Producer-specific properties
Producer executes and carries on
dialog with end-user
Producer supplies final data values to
Consumer at end of dialog

Producer
specific
operations

Integrating Distributed End-User Experiences

Model customization: Altering types (schema)

Producer

Generates

Data model
(Schema)

Data values
(Instance)

Validates
Consumer adds restrictions to data
model properties to control data
values for Producer-specific properties,
e.g. limits pull-down options, narrows
data type constraints Producer

specific
operations

Integrating Distributed End-User Experiences

View customization

Producer

Generates

Data model
(Schema)

Data values
(Instance)

Validates

Consumer inserts new markup for the
Producer‘s view, respecting defined
restrictions for the fragments the
Producer can accept, e.g. provides
formatting for cells in calendar‘s
month view.

Producer
specific
operations

Integrating Distributed End-User Experiences

Control customization

Producer

Generates

Data model
(Schema)

Data values
(Instance)

Validates

Consumer inserts new constraints
linking values across multiple data
elements in the Producer‘s model

Producer
specific
operations

Integrating Distributed End-User Experiences

Customization Description Language

Description ML for WSIA output markup and properties allows
Inserting/deleting/modifying output markup and properties
Setting formatting preferences, e.g.

calendar mode (day/week/month view, Sun/Mon first…)

In the future…driving view state, e.g.
which tab is selected
field focus
active field values (not yet validated for action inputs)

Customizations can be run
At the Consumer - for privacy from the Producer; and performance by
delegation of updates closer toward the user
At the Producer - for complex adaptations; for privacy, or to offload
integration effort, from the Consumer

Integrating Distributed End-User Experiences

Overview of the WSIA interfaces

Base WSIA Service

Producer
Lifecycle: createInstance, destroyInstance
Service description: getInterface, hasInterface

Properties: getPropertySchema, setProperties, getProperties

User interaction: getOutput, performAction

Property synchronization: addEventListener,
removeEventListener, handleEvent

Custom: service specific operations to affect either
properties or output

Integrating Distributed End-User Experiences

getOutput

createInstance

Consumer Producer Interaction with Customization:
Instantiation and initialization of Producer values and constraints

Consumer (client) Producer
Adds
Component

Generates
Output

initInstance(s, property values, constraints)

S

User

Customizes
Component

Allocate new Instance

Assigns Consumer’s
property values and constraints
returns updated properties

I

P

S

P
Output returned to end-user
through the Consumer

S S

S

P C

Integrating Distributed End-User Experiences

performAction

getOutput (s, property values)

Consumer Producer Interaction with Customization:
Two-pass action invocation

Consumer (client) Producer

Generates
Output

Clicks
Action

User

Action Handling returns
updated properties, “submit”
indication for final action

A AS

P

Consumer passes final
property updates for Output,
e.g. correlated SKU values

P

P SS

S

Integrating Distributed End-User Experiences

custom Action

getOutput (s, property values)

Consumer Producer Interaction with Customization:
Action invocation on Consumer markup embedded within Producer

Consumer (client) Producer

Generates
Output

Clicks
Action

User

Action Handling returns
updated properties, “submit”
indication for final action

A AS

P

Consumer passes final
property updates for Output,
e.g. correlated SKU values

P

P SS

S

Action is intercepted at
Consumer, mapped onto
custom producer action

Integrating Distributed End-User Experiences

Customization protocol questions

Should initInstance arguments be allowed on createInstance?
A separate initInstance allows for reuse of the same instance handle -- is this
important?

Should property constraints be allowed any time during a component’s
lifecycle?

On an action or getOutput invocation?

How is “submit” indicated on a return value from performAction?
What if custom actions are allowed? Common message definition for “submit”
is required

What processing is required for user actions on embedded view
fragments?

I.e. those view fragments inserted by the Consumer -- can they simply be
intercepted by the Consumer?
If the Consumer then invokes a custom Producer action, it must have the
same return message to inform the Consumer of changed property values and
participate in the same 2-pass processing model to generate output

	Property-oriented approach to Producer customization:Lifecycle of customizing and invoking a Producer
	Example: Initializing data in Health Insurance Personal Profile Scenario
	Example: Consumer propagates values between a Producer‘s properties
	Example: The Memory Configurator and Availability scenarios
	Example: The Memory Configurator and Availability scenarios
	Propagating values across Producers, a.k.a. CoordinationExample: Indy car driver scenario
	“Correlating” Producer and Consumer properties
	Business Scenarios and Use Caseswww.oasis-open.org/committees/wsia/scenarios/index.shtml
	Business Scenarios and Use Caseswww.oasis-open.org/committees/wsia/scenarios/index.shtml
	Scenario: Customization
	XFORMS-based approach to customization
	Model customization: Setting Data Values (instance)
	Model customization: Altering types (schema)
	View customization
	Control customization
	Customization Description Language
	Overview of the WSIA interfaces
	Consumer ? Producer Interaction with Customization:Instantiation and initialization of Producer values and constraints
	Consumer ? Producer Interaction with Customization:Two-pass action invocation
	Consumer ? Producer Interaction with Customization:Action invocation on Consumer markup embedded within Producer
	Customization protocol questions

