

WSIA - WSRP Core Specification

Version 1.0

8/1/2002

[image: image1.png]OASIS

WSIA - WSRP Core Specification
Working Draft 0.3, 31 July 2002

Document identifier:

Draft-WSIA-WSRP_Core_Interface-v0.3 (Word)

Location:

http://www.oasis-open.org/committees/wsia
http://www.oasis-open.org/committees/wsrp
Editors:

Carsten Leue, IBM Corporation <leue@de.ibm.com>

Rich Thompson, IBM Corporation <richt2@us.ibm.com>

Contributors:

Alan Kropp, EpiCentric Corporation <akropp@epicentric.com>

Abstract:

This specification defines …

Status:

This draft is still at the level of an expert group spec. Various concepts continue to be debated. Points needing clarification as this evolves into the final specification are much appreciated and may be emailed to Rich Thompson.
If you are on the wsia@lists.oasis-open.org or wsrp@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to the wsia-comment@lists.oasis-open.org or wsrp-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to wsia-comment-request@lists.oasis-open.org or wsrp-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

The errata page for this specification is at http://www.oasis-open.org/committees/xxx/yyy.

Copyright © 2001, 2002 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

41
Introduction

41.1
Overview

51.2
Exemplary Scenarios

51.2.1
Interaction between levels of sophistication

112
Terminology

113
General Interface Design Issues

113.1
Security

113.2
Data Objects

113.3
Types of Stateful Information

123.4
Information Passing Mechanisms

123.5
Persistence and statefulness

123.6
Two-phase protocol

133.7
Lifecycles

133.8
Scopes

143.9
Interaction Lifecycle States

143.9.1
Assumptions:

143.9.2
State 0: Producer Unknown

143.9.3
State 1: Producer Known

143.9.4
State 2: Producer Active

144
Self-description Interface

155
Lifecycle Interfaces

155.1
Registration

165.2
Entities

175.3
Releasing Resources

186
Markup Related Interfaces

186.1
Single page/no interaction

196.2
No local state

196.3
Local state

207
Transparent State Interfaces

238
Security

239
Markup

239.1
Modes

239.1.1
VIEW Mode

239.1.2
EDIT Mode

239.1.3
HELP Mode

239.2
Window States

249.2.1
MINIMIZED Window State

249.2.2
NORMAL Window State

249.2.3
MAXIMIZED Window State

249.2.4
Additional Window States

249.3
URL Encoding

269.4
Namespace Encoding

269.5
Markup Fragment Rules

269.5.1
Disallowed Tags

279.6
CSS-Style Definitions

279.6.1
Links (Anchor)

279.6.2
Fonts

279.6.3
Messages

289.6.4
Tables

289.6.5
Sections

289.6.6
Forms

289.6.7
Menus

299.6.8
Portlet

2910
Data Structures.

3811
WSDL Interface Definition

5412
References

5412.1
Normative

55Appendix A. Acknowledgments

56Appendix B. Revision History

57Appendix C. Notices

1 Introduction

This specification provides a straw man for the joint WSIA/WSRP interfaces. It is based on the embedded use case requirements gathered in the WSIA committee and the requirements gathered by the WSRP committee and on the concrete proposals to both committees.

1.1 Overview

Both Web Services for Interactive Applications (WSIA) and Web Services for Remote Portals (WSRP) are standards for visual, user-facing web services components. Both WSRP and the embedded use case of WSIA focus on plug-and-play services that enable Producer independent intermediary web applications (such as portals) that aggregate content or applications from different sources. As such, this specification is designed to enable businesses to provide content or applications in a form that does not require any manual content or application specific adaptation by consuming intermediary applications. This specification allows Producers to determine how their content and applications are visualized for End-Users and to which degree adaptation, transcoding, translation etc may be allowed.

Producer services MAY be published into public or corporate service directories (such as UDDI) where they can be discovered by intermediary applications. Web application deployment vendors can wrap and adapt their middleware for publishing as compliant services. Vendors of intermediary applications can enable their products as Consumers of these services.

Consumers can easily integrate content and applications from many internal and external Producers. The administrator of the Consumer simply picks the Producers and integrates them; no programmers are required to tie new content and applications into a page of the resulting web application.

To accomplish these goals, this standard defines a web services interface description using WSDL and all the semantics and behavior that Producer web services and Consumer applications must comply with in order to be pluggable. In addition the standard details on how information describing the service can be acquired: as metadata that SHOULD be provided when publishing services into UDDI directories and is also available via self-description operations.

The standard accounts for the fact that Producer services may be implemented on very different platforms, be it as a Java/J2EE
 based web service, a web service implemented on Microsoft's .NET
 platform or a portlet published directly by a portal. Special attention has been taken to ensure this language independence. The standard enables use of generic adapter code to plug any Producer service into intermediary applications rather than requiring Producer specific proxy code.

These services are built on standard technologies including SOAP
, UDDI
, and WSDL
 and will leverage future Web Service standards as WS-Security and WS-Policy.

1.2 Exemplary Scenarios

This specification needs to support Consumers and Producers of various levels of sophistication interacting with one another. Examples include:

SimpleProducer: Does not support registration or persistence. May only offer 1 type of entity.

SophisticatedProducer: Requires Consumers to register and the returned reference is required for all future invocations. Publishes a refined WSDL that declares properties for interacting with the base service. Supports a number of entities, some of which publish a refined WSDL that declare supported markupTypes and properties for interacting with the entity.

SimpleConsumer: Does not persist any registration/entity information. Have explicit declarations for binding to and interacting with Producer services.

SophisticatedConsumer: Supports persisting Producer, Consumer and End-User related data. Supports Single Sign On for its End-Users (may require End-User to trust Consumer with sign-on data). May support discovery of new Producers by either Administrators and/or End-Users.

1.2.1 Interaction between levels of sophistication

In the diagrammatic representations below, the variations for the simple Producer and Consumer reduce to removal of all the persistent calls. This implies the Consumer does not support the concept of a Page Designer (page designs are effectively declared in code … possibly declarative code). For a SophisticatedConsumer to use a SimpleProducer, the detection of what the Producer is willing to persist results in the Consumer persisting everything. All the steps related to creating / updating persistent entities get dropped for the case of a SimpleConsumer interacting with a SophisticatedProducer. In addition, the SimpleConsumer should release the consumerHandle at the end of the interaction since it does not support persisting it and failing to release it would result in dead handles continuing to consume resources at the Producer.
1.2.1.1 Simple Producer (no state) / Simple Consumer

	End-User
	
	Consumer
	
	Producer

	Directs browser to the Consumer’s URL
	
http get ….
	Consumer attempts to register
	
registerConsumer()
	Does not support registration

	
	
	
	
null
	Returns null

	
	
	Get markup from a Producer Offered Entity
	
getMarkup(null, …)
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

1.2.1.2 Simple Producer (with state) / Simple Consumer

	End-User
	
	Consumer
	
	Producer

	Directs browser to the Consumer’s URL
	
http get ….
	Consumer attempts to register
	
registerConsumer()
	Does not support registration

	
	
	Consumer stores the null registration for use later.
	
null
	Returns null

	
	
	Get markup from a Producer Offered Entity
	
getMarkup(null, …)
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	User interacts with the markup
	
http post ….
	Consumer determines correct Producer/entity
	
PerformInteraction()
	Referenced entity handles logical interaction

	
	
	Store navigationalState for use on a page refresh
	
navigationalState
	Returns modified navigational state

	
	
	Request new markup
	
getMarkup(null, …)
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

1.2.1.3 Sophisticated Producer (stateful +configurable) / Simple Consumer

	End-User
	
	Consumer
	
	Producer

	Directs browser to the Consumer’s URL
	
http get ….
	Consumer attempts to register
	
registerConsumer()
	Supports registration

	
	
	Consumer stores the registration (cc) for use later.
	
ConsumerContext: (w/ consumerHandle)
	Returns new consumerHandle

	
	
	Get markup from a Producer Offered Entity
	
getMarkup(cc, …)
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	User interacts with the markup
	
http post ….
	Consumer determines correct Producer/entity
	
PerformInteraction()
	Referenced entity handles logical interaction

	
	
	Store navigationalState for use on a page refresh
	
navigationalState
	Returns modified navigational state

	
	
	Request new markup
	
getMarkup(cc, …)
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	End-User stops interacting
	
Session w/Consumer times out
	Consumer deregisters
	
releaseHandles(cc)
	Producer releases resources

1.2.1.4 Simple Producer (stateful) / Sophisticated Consumer

	End-User
	
	Consumer
	
	Producer

	
	
	Consumer Administrator registers
	
registerConsumer()
	Does not support registration

	
	
	Consumer stores the null registration for use later.
	
null
	Returns null

	
	
	
	
	

	
	
	Page Designer looks up Producer Offered Entites … clones one
	
cloneEntity(null,…)
	Clones a new entity from supplied reference

	
	
	Adds new Entity into the Designer’s toolbox
	
EntityContext: (w/entityHandle)
	Applies changes and returns new handle

	
	
	Page Designer adds Entity to page
	
	

	
	
	
	
	

	Directs browser to the Consumer’s URL
	
http get ….
	Get markup from Entity
	
getMarkup(null, …)
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	User interacts with the markup
	
http post ….
	Consumer determines correct Producer/entity
	
PerformInteraction()
	Referenced entity handles logical interaction

	
	
	Store navigationalState for use on a page refresh
	
navigationalState
	Returns modified navigational state

	
	
	Request new markup
	
getMarkup(null, …)
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	
	
	
	
	

	
	
	Consumer Administrator deregisters
	
releaseHandles(entityHandle)
	Producer releases resources

1.2.1.5 Sophisticated Producer (stateful +configurable) / Sophisticated Consumer

	End-User
	
	Consumer
	
	Producer

	
	
	Consumer Administrator registers
	
registerConsumer()
	Supports registration

	
	
	Consumer stores the registration (cc) for use later.
	
ConsumerContext: (w/consumerHandle)
	Returns new consumerHandle

	
	
	
	
	

	
	
	Page Designer looks up Producer Offered Entites … clones one
	
cloneEntity(cc,…)
	Clones a new entity from supplied reference

	
	
	Adds new Entity into the Designer’s toolbox
	
EntityContext: (w/entityHandle)
	Applies changes and returns new handle

	
	
	Page Designer adds Entity to page
	
	

	
	
	
	
	

	Directs browser to the Consumer’s URL
	
http get ….
	Get markup from Entity
	
getMarkup(cc, …)
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	User interacts with the markup
	
http post ….
	Consumer determines correct Producer/entity
	
PerformInteraction()
	Referenced entity handles logical interaction

	
	
	Store navigationalState for use on a page refresh
	
navigationalState
	Returns modified navigational state

	
	
	Request new markup
	
getMarkup(cc, …)
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	
	
	
	
	

	
	
	Consumer Administrator deregisters
	
releaseHandles(cc)
	Producer releases resources

2 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [RFC2119].

3 General Interface Design Issues

The major design goals of this specification are simplicity, extensibility and efficiency.
3.1 Security
To ensure security during the transfer of data the Producer may expose its entry point via SSL with appropriate indications in its WSDL bindings.

It is also envisioned that document level security standards that are now being developed will apply to this specification. Their use is not included in this version of the specification as several important standards are not yet available (in particular, security policy declarations). To the extent that Producers and Consumers use document level security, we encourage adherence to established standards (or emerging ones when none has been established yet).

3.2 Data Objects

It is often necessary to pass data to operations. Wherever possible this specification defines typed data objects as the transport mechanism of such data. Property arrays are also defined for vendor or application specific data extensions. Producers employing these extensions SHOULD provide typing information for the extended data items. This allows Consumers to provide type checking outside of that done by typical interface layers. See Section 11 for more details on data objects.

3.3 Types of Stateful Information

Because WSIA - WSRP are connectionless interfaces (as are all Web service interfaces), the Producer must be able to return information to the Consumer, with the understanding that this information will be sent back to it. Three types of stateful information exist:

1. Navigational state: This is the state that allows the current page to be correctly generated including on a page refresh. Web applications typically store this type of state in the URL so that both page refresh and bookmarked pages will generate approximately what the End-User expects. The Producer returns this state to the Consumer such that it may satisfy these expectations of the End-User. Whether the Consumer stores this state or merely a reference to it in the URL or does not supply this functionality to its End-Users is a Consumer implementation choice.

2. Transient state: This is state stored on the Producer related to a sequence of operations (for example, a set of pages may parameterize, execute & return the results of a database query. This type of state could be used for the connection into the database.) Once this type of state is generated, the Producer returns a reference to it and the Consumer MUST return this reference on future invocations. This specification refers to this type of state as a Session (similar to http) and the opaque reference as a sessionID.

3. Persistent state: This is state that the Producer persists such the reference it will return to the Consumer will not time out or otherwise be implicitly destroyed. This specification defines two such kinds of state:

a. Consumer Registration: This persistent state encapsulates a relationship between the Consumer and Producer. Various pieces of data may be part of this state and thereby impact all invocations within the scope of this registration. This specification refers to the reference to this state that a Producer supplies as a consumerHandle.
b. Entity: In addition to the entities a Producer offers for all Consumers to use, this specification includes the ability of a Consumer to create a unique configuration of one of those entities for its own use. The reference to a configuration is referred to as an entityHandle by this specification.

Note that the above indicates neither the mechanism nor the amount of information to be passed between Producer and Consumer.

3.4 Information Passing Mechanisms

All information passing enabled by this specification is between exactly one Producer and one Consumer. Any sharing of information within a particular Producer service is outside the scope of this specification. If the Consumer wants the information to be shared by multiple Producer services, the Consumer must “mediate” this sharing (again, using means that are outside the scope of this version of the specification).

3.5 Persistence and statefulness

This specification makes no assumption about the existence of persistence mechanisms at either the Producer or the Consumer. In the getMarkup() and performInteraction() calls, the navigationalState field provides the means for the state necessary for the entity to render the current markup to be returned to the Consumer. This enables the Consumer to reasonably support page refresh and bookmarking by the End-User. If the Producer utilizes local state, then it stores the conversational state (actual mechanism is out of scope), and returns an opaque sessionID to the Consumer for use during the lifetime of the session.

If the Consumer is operating in a stateless manner, then it may choose the way to achieve this. In the case of an HTTP transport the Consumer may employ standard HTTP mechanisms (cookies or URL-rewriting) to push the markup parameters or sessionID out to its client. If operating in a stateful manner, the Consumer may employ any number of persistence/caching mechanisms of varying degrees of sophistication.

The nature of the conversation between the client and the Consumer, for purposes of this section, is considered to be out of scope. This should not be taken to mean that information about the client, including user profile data, is opaque to the Producer. There are many use cases for which user identity must be conveyed to the Producer. Also, a stateful Producer can be expected to relate its private conversational state with the specific client.

3.6 Two-phase protocol

This specification attempts to account for both isolated interactions between a Consumer and a Producer, and also those interactions that may cause state changes in other entities the Consumer aggregates from the same Producer. Common causes of such shared state include use of a common backend system (eg. database) and Producer mediated sharing. For these reasons, there is a “two-phase” capability built into the protocol. Use of this capability is optional and entirely dependent on the Consumer’s ability and desire to take advantage of it.

In a two-phase interaction, the Consumer first invokes the entity at the Producer, which the client directly interacted with through the performInteraction() interface, and MAY block until receipt of a response. Those Consumers interacting with the transparent state of an entity MAY further update the entity’s state. The Consumer MAY then invoke those entities it is aggregating through the getMarkup() operation.

Interaction semantics are well defined across the spectrum of interaction styles supported in the protocol. In other words, the results of the Consumer invoking a Producer, regardless of whether it may have side effects in other entites, is well-defined regardless of whether the performInteraction() invocation is blocking or non-blocking, and regardless of the order in which the Consumer does the getMarkup() invocations.

Side-effects that may cross Producer boundaries are out of scope for this version of the specification, though mechanisms to standardize such interactions are intended for future versions.

3.7 Lifecycles

There are several different types of lifecycle included in this specification:

Deployment: This lifecycle defines various items upon deployment. Those definitions remain valid until the deployment ends. Examples include the registrationData for a Producer and ProducerOfferedEntities.

Persistent: This lifecycle starts with an explicit operation to create the item and ends only with an explicit operation to destroy the item. Examples include the consumerHandle and ConsumerConfiguredEntities.

Transient: This lifecycle can either start with an explicit operation OR as a side-effect of some other operation. The item created is transitory and no explicit operation is required to destroy it. This specification generally includes an expires element (a duration in seconds) whenever such an item may be created so that any resources consumed relating to the item may be reclaimed at an appropriate time. An example of this is session creation.

3.8 Scopes

There are several scopes referred to in various places in this specification.

Producer scope: This scope is initiated when a Producer is deployed and ends when the service is no longer available. As such it encompasses all interactions of the Producer with all Consumers and provides definitions for things such as what data is required for a Consumer to register, what entities are offered by the service, etc.

Consumer scope: This scope in initiated when a Consumer registers with a Producer and ends when the handle referring to that registration is explicitly released. As such it encompasses any entities the Consumer configures and any interactions with the entities of the Producer.
Entity scope: This scope is initiated when an entity is created and ends when the reference to the entity is released. As such it encompasses all interactions with the entity.
Session scope: This scope is initiated when the entity needs to store local state and ends when the session holding that state is released (either via an explicit operation OR via a timeout mechanism). As such it encompasses a set of operation invocations in which the Consumer has supplied the handle to the session.
3.9 Interaction Lifecycle States

3.9.1 Assumptions:

In general the Producer is a web service endpoint exposing for one or more entities that generate markup and handle actions resulting from interactions with that markup. How these entities are implemented and managed is not defined by this specification, though it is anticipated that the model of how requests are conveyed to the entities by the Producer will be strongly influenced by this specification.

This specification defines the following logical states and state transitions for the relationship between a Producer and a Consumer.

3.9.2 State 0: Producer Unknown

The Consumer has no knowledge that the Producer exists. From this state the Consumer transitions to the Known state via discovery; namely by learning the location of the Producer.

3.9.3 State 1: Producer Known

In this state the Consumer knows the location (i.e. its access point and at least the WSDL of the self description method) of the Producer. From this state the Consumer can transition back to the Unknown state, but typically transitions to the Active state through a process called registration. Additionally, this is the earliest state at which the Consumer MAY request a Producer to describe itself. This ability is present in all states other than Unknown.

3.9.4 State 2: Producer Active

Most of the interesting things happen while the Producer is in the Active state. This is where both page designers and users can interact with the Producer. It is possible to transition back to the Known state by undoing the registration that led from state 1 to state 2. The Consumer is free to perform this state transition multiple times.

4 Self-description Interface
A Producer may be discovered in many ways. Some of these (eg. UDDI
 or WSIL
) provide a means by which the capabilities of the service may also be discovered. Other discovery mechanisms (eg. emailed URL to a properly enabled browser) do not expose these capabilities. This operation provides a means by which a Consumer MAY discover those capabilities in a discovery mechanism agnostic way. It also provides the means by which a Producer MAY provide information about its capabilities in a context-sensitive manner (eg. registration may be required to discover the full capabilities of a Producer).

description = getDescription(handle);

Where:

handle is an opaque reference that sets the context for the returned description. This handle may refer to the Consumer’s registration with the Producer or even a particular configured entity. If the supplied handle references an entity, the Producer MUST return the service description for that entity. If the supplied handle references a Consumer registration, the Producer MUST return the service description for access to itself within the context of that Consumer registration. If a null handle is supplied, the Producer MUST at least return the information required of a Consumer in order to register.

description is an extensible data structure described in Section 11. This has various descriptive elements relevant to the supplied handle, including:
wsdl: A document fragment coorsponding to the WSDL for the supplied handle
entities: If the supplied handle refers to a Consumer registration, this array supplies information about the entities the Producer offers.
registrationData: If the supplied handle is null or refers to a Consumer registration, this array of property descriptions declarations the data that must and may be supplied as part of a registerConsumer() invocation.
entity: If the supplied entity refers to an entity, this structure supplies information about the referenced entity.

For Producers managing access to a set of entities, this operation MUST return the appropriate WSDL document for interacting through the supplied handle. In all cases, passing a null handle returns the WSDL for the base Producer service appropriate to register a Consumer. [R300] [R301][R303].

5
5.1.1

5.1.2

5.1.3

5.1.4

6 Lifecycle Interfaces

6.1

4.
5.
6.
a.
b.

6.2

6.3 Registration

Registration describes the transition between Producer state 1 (known) and state 2 (active), the Consumer actively establishes a relationship with the Producer. This relationship will be referenced via an opaque handle in subsequent invocations the Consumer makes of the Producer within this relationship. Both the Consumer and the Producer are free to end this relationship at any time. The Consumer MAY end the relationship via an explicit call to releaseHandles() method, whereas the Producer MAY end the registration by invalidating the registration identifier.

consumerContext = registerConsumer(registrationData);

Where:

registrationData provides the means for the Consumer to supply the data required for registration. This array of properties is defined in Section 11 and MUST match that which the Producer declared in response to a getDescription() invocation.

consumerContext is an extensible data structure defined in Section 11. This data structure MUST be supplied in subsequent invocations. It includes:

consumerHandle: An opaque reference to the established relationship.
consumerState: An opaque string which the Producer MAY use to push a serialized form of state for this registration to the Consumer for persistence. If this field is set, the Consumer MUST return it on future invocations requiring a consumerContext.
userID: The Consumer’s id for the End-User.
sendTransparentState: A boolean indicating whether the Consumer is interested in receiving back the transparent portion of state as a property array.
The returned consumerContext is used in all subsequent invocations to reference this registration. If the Producer does not support registration, it returns null. It is then valid to pass such null to subsequent methods that require a consumerContext. If the registration fails for other reasons (e.g. authentication)
a fault message MUST be thrown indicating this to the Consumer.

After releasing the consumerHandle all handles created within the context of the consumerHandle become invalid. [R500][R501][R503]

[CL: What about deleting entities in a null registration context. We could specify that the registerConsumer method must always return a context (maybe with a constant registration handle) and that this context can be used in any situation to release dependent handles.]

[RT: A dummy context (constant for all Consumers) does not help relative to deleting created entities If a Producer does not support registration, I think the cleanest way to indicate this is via a null handle. This will require special processing by the consumer (must explicitly delete entities rather than just relying on the scooping of the consumerHandle, but that is a fallout of allowing Producers who do not support registration).]

The Consumer must persistently store the consumerHandle. If the Consumer cannot persist the handle it must release the consumerHandle using the releaseHandles() method when exiting the current conversation.

One Consumer can register itself multiple times to a particular Producer with potentially different settings (eg. security settings) resulting in multiple consumerHandles. [R351] Different registration contexts must be identified by different consumerHandles.

This operation provides means for the Consumer to modify a relationship with a Producer.

consumerContext = modifyConsumer(consumerContext,

 registrationData);

Where:

consumerContext A context for an already existing registration. [R353]

registrationData provides the means for the Consumer to supply the modified data. The base for this extensible data structure is defined in Section 11.

A consumerContext is returned since the Producer MAY store state for this registration in this structure for the Consumer to supply on future invocations. The Producer MUST NOT modify the consumerHandle contained within this data structure.

6.4 Entities

Producers MUST expose 1 or more logically distinct ways of generating markup and dealing with interaction with that markup. This specification calls these Entities. The Producer MUST declare the entities it is exposing in its service description. This declaration contains a number of descriptive parameters; in particular it includes an entityHandle that Consumers may use to refer to, the so-called “ProducerOfferedEntity”. These entities are pre-configured and non-modifiable by Consumers.

In addition to the ProducerOfferedEntitys, a Consumer MAY request a unique configuration of one of these entities either in an opaque manner (eg. the ‘edit’ button common on aggregated pages which invokes an entity generated page for setting the configuration) or use property definitions found in the entity’s metadata to configure it in a transparent manner. Such an entity is called a “ConsumerConfiguredEntity”. The supplied referenced to an entity may either be a ProducerOfferedEntity of a previously cloned ConsumerConfiguredEntity.

This operation provides means for the Consumer to request the creation of an entity the Producer has indicated it exposes for interaction for the purpose of generating a new configuration of that entity.

entityContext = cloneEntity(consumerContext,

 entityHandle,

 entityProperties);

Where:

consumerContext is an extensible data structure (defined in Section 11) which carries contextual information the Producer MAY use when establishing the new entity. For example, this includes references to the Consumer registration that may be useful for access control purposes.

entityHandle is an opaque reference to an entity, either as offered by the Producer or one the Consumer has configured previously. The initial state (prior to applying the supplied entityProperties) of the new entity MUST be equivalent to the state of the entity this handle references.

entityProperties allows the Consumer to immediately modify the state of the new entity. This array of properties MUST match that returned from a getDescription() invocation supplying the entityHandle.

entityContext is an extensible data structure defined in Section 11 which includes:

entityHandle: An opaque reference to the entity.
entityProperties: If sendTransparentState in the consumerContext structure was set to true, this property array will contain the current values for the transparent state of the entity.
entityState: This opaque string provides the means for a Producer to push a serialized form of the state of an entity to the Consumer for persistence. If this field is set by a Producer, the Consumer MUST return the supplied value on future invocations.
modifiedProperties: A boolean used only when a Consumer is supplying a changed set of properties as an input parameter of an invocation.

The returned entityContext is available for use in subsequent invocations to identify the configured entity. No relationship between the supplied entity and the new entity is defined by this specification, though they all MUST be scoped by the consumerHandle supplied in the consumerContext of this invocation. The handle of the new CCE must be persisted by the Consumer and deleted if it is no longer needed. If the Consumer is unable to persist the entity it must delete it when the conversation ends.

This operation provides means for the Consumer to request modification to the state of a configured entity.

entityContext = modifyEntity(consumerContext, entityContext);

Where:

consumerContext is an extensible data structure (defined in Section 11) which carries contextual information

entityContext contains an entityHandle as a reference to the ConsumerConfiguredEntity which this invocation seeks to modify. It also contains an array of properties the Consumer is supplying in order to modify the state of the entity.
T
he returned entityContext is an extensible data structure, defined in Section 11, which includes the opaque reference (entityHandle) the Consumer MUST use to refer to the configuration. The Producer MUST NOT generate a new entityHandle as a result of processing this invocation.

6.5 Releasing Resources

This operation provides a means for the Consumer to request a Producer release a set of handles, in which case the Producer may dispose of any related resources and invalidate the handles.

releasedHandles[] = releaseHandles(handles[]);

Where:

handles[] is an array of references the Consumer will no longer use and is therefore requesting the Producer to invalidate.

releasedHandles[] is an array of references the Producer has actually released.

The Producer should be aware that in some cases the Consumer may not invoke releaseHandles() (for example, if the Consumer application is abruptly terminated) and should implement a destruction mechanism for transient resources based on a timeout. The Producer MUST handle cases where the Consumer has included a handle in the passed array that was released in some other manner (eg. a timeout mechanism released it) without generating an error.

For efficiency reasons this operation takes an array of handles to be destroyed and returns an array of handles that have actually been destroyed. The returned array may be larger than the input array due to the implicit deletion of subordinate entities (e.g. releasing a consumerHandle leads to the releasing of all associated entity handles). To make sure that all handles that have been passed as parameters have been released the Consumer must check if the output array includes all handles from the input array. Processing the array of handles MUST NOT generate an error unless the Consumer does not have the authority to release handles which were included in the array (this statement does not exclude the possibility of general runtime errors that may occur on any SOAP invocation).

7 Markup Related Interfaces
As user facing web services, the core aspect of a WSIA or WSRP compliant service includes the generation of markup which is to be used to represent the current state of an entity to an End-User and the processing of interactions with that markup.

This specification includes several signatures for these operations in order to support Producers of varying sophistication.
7.1 Single page/no interaction

This signature is useful when a Producer only exposes a set of entities which maintain no state at all (ie. publish only 1 page with no user interactions).

markup= getMarkup(consumerContext, entityContext);

[RT: Note that there is an open discussion regarding the underlying object model and what that implies as to the data items that appear as first class parameters in signatures such as this.]

Where:

consumerContext is an extensible data structure, defined in Section 11, with a set of references the Producer MAY use for generating the markup.

entityContext is an extensible data structure, defined in Section 11, with a set of references to be used in generating the markup. In particular, this include entityHandle, an opaque reference to the entity the Producer MUST use for generating the markup, and may include entityState and entityProperties, which provide the means of representing/setting the state that the markup represents.

markup is the generated page.

[RT: I think this signature is broken. How can the entity properly generate markup without a markupContext. If that parameter is added, then the only distinction from the signature below is returning markup rather than a markupResponse structure. That difference is really just the ability to return a sessionID! I think this signature should be removed.]

7.2 No local state

This specification allows for entities that do not maintain any state at all at the Producer. Both to support these entities and to assist Consumers in properly supporting End-User page refreshes and bookmarks, this specification allows entities to return their navigational state (navigationalState field) back to the Consumer. It is then the responsibility of the Consumer to retransmit the navigationalState to the Producer with each request.

One way in which the Consumer can store the navigationalState for all of its aggregated entities is by encoding them into the URL and returning them to the client. In this way a stateless Consumer may be implemented. However, since this implementation option requires the URL to be written at the top of the output stream, the navigationalState of all entities must be known before the Consumer begins generating the output stream. Rather than require the Consumer delay opening the output stream until it has collected markup from all entities on the page, this specification does not allow the getMarkup() invocation to modify the navigationalState.
Only an invocation of performInteraction()is allowed to modify the navigationalState of the entity.

Since the means for pushing navigational state to the Consumer exists in the structures passed in the signatures for entities that also maintain local state, this section does not separately include the signatures.

7.3 Local state

These signatures are useful when a Producer exposes entities that do maintain local state (ie. sessions) and therefore only push an opaque ID for looking up this state to the Consumer.

interactionResponse = performInteraction(consumerContext,

 entityContext,

 interactionContext)

Where:

consumerContext is a data type defined in Section 11 with a set of references related to the Consumer which the Producer’s entities MAY use for generating the markup, in particular the consumerHandle.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity the Producer MUST use for processing the interaction. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer.

interactionContext is a data type defined in Section 11 with a set of references related to the current request which the Producer MAY use when processing the interaction. It includes:
sessionGroupID: This parameter allows the Consumer to provide a hint to the Producer about which entities should be involved in any session sharing the Producer implements. Only entities with identical sessionGroupID fields SHOULD be placed in the same shared session.
sessionID: Once the Producer has returned a sessionID to the Consumer, this field MUST be where that value is supplied back to the Producer on subsequent invocations.
locale: The locale for the End-User.
currentMode: The current mode for displaying the entity’s markup.
previousMode: If the mode has changed, this indicates its previous value.
windowState: The current window state for displaying the entity’s markup.
httpHeaders: In addition to URL type parameters, transport level name/value pairs are often supported. These are collected into this property array named as per a commonly used transport (http).
clientParameters: This includes all parameters on the URL whose activation caused this invocation. These both include parameters related to the navigational state of the entity and parameters to this particular invocation.
uploadData: This opaque string permits the passing of large amounts of data (eg. uploading a file) to the invocation .
secureClientcommunications: A boolean indicating whether the End-User to Consumer communications are secured (eg. by SSL/TLS).
interactionResponse is an extensible data structure, defined in Section 11, which includes:

sessionID: the handle the Producer uses for looking up local state. This will be null until the Producer has a need for such local state. The invocation triggering that need will generate an ID and return it to the Consumer. The Consumer MUST supply this ID on subsequent invocations.

expires: The number of seconds that must elapse between uses before the session referred to by sessionID will be timed out and its resource released by the Producer. This is provided as a hint for when the Consumer MAY also cleanup resources related to this sessionID.
navigationalState: an opaque string that provides the state information the entity uses to generate markup. It is the Consumer’s responsibility to supply this string both when requesting the entity initially generate a page and on page refresh.

markupResponse = getMarkup(consumerContext,

entityContext,

markupContext);

Where:

consumerContext is a data type defined in Section 11 with a set of references the Producer MAY use for generating the markup.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity the Producer MUST use for generating the markup. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer.

markupContext is a data type defined in Section 11 with a set of references related to the current request which the Producer MAY use for generating the markup. These include:

sessionGroupID: This parameter allows the Consumer to provide a hint to the Producer about which entities should be involved in any session sharing the Producer implements. Only entities with identical sessionGroupID fields SHOULD be placed in the same shared session.

sessionID: Once the Producer has returned a sessionID to the Consumer, this field MUST be where that value is supplied back to the Producer on subsequent invocations.
clientData: A data type defined in Section 11 for data items related to the client device in use by the End-User.
locale: The locale for the End-User.

navigationalState: The locale for the End-User.

currentMode: The current mode for displaying the entity’s markup.

previousMode: If the mode has changed, this indicates its previous value.

windowState: The current window state for displaying the entity’s markup.

characterSet: The character set for the aggregated page.
markupType: The markupType the Consumer would like the entity to generate.
httpHeaders: Transport level name/value pairs.

secureClientcommunications: A boolean indicating whether the End-User to Consumer communications are secured (eg. by SSL/TLS).
markupResponse is an extensible data structure, defined in Section 11, which includes:

sessionID: the handle the Producer uses for looking up local state. This will be null until the Producer has a need for such local state. The invocation triggering that need will generate an ID and return it to the Consumer. The Consumer MUST supply this ID on subsequent invocations.

expires: The number of seconds that must elapse between uses before the session referred to by sessionID will be timed out and its resource released by the Producer. This is provided as a hint for when the Consumer MAY also cleanup resources related to this sessionID.

markup: the generated page.
8 Transparent State Interfaces
All state in the previous operational signatures was opaque to the Consumer (eg. either as navigationalState or a sessionID). In addition, this specification includes means by which a Producer MAY publish information about state in an entity specific manner. This is enabled through Properties which are declared in the metadata specific to an entity. Each property declaration includes a name, datatype (default = xsd:string) and a scope (default = Session). The following operations enable the Consumer to interact with this transparent portion of an entity’s state.

This first set of signatures apply when a Consumer wishes to set properties related to the configuration or personalization of the entity (eg. scope was specified as Entity). Since these properties do not require the existence of a session, one is not supplied.

property[] = setProperties(consumerContext,

 entityContext);

[RT: distinction between this signature and modifyEntity? I suggest this signature be dropped.]

Where:

consumerContext is a datatype defined in Section 11 with a set of references the Producer MAY use for locating the current state of an entity. This includes a flag indicating whether or not the Consumer is interested in receiving back the current transparent state of the entity as a property array.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity the Consumer is setting properties on as well as the properties being set. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer.

property[] is an array of properties. If the flag in the consumerContext parameter indicates the Consumer is interested in the current transparent state settings, the entity will return these as a property array.

property[] = getProperties(consumerContext,

 entityContext,

 name[]);

Where:

consumerContext is a datatype defined in Section 11 with a set of references the Producer MAY use for locating the current state of an entity.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity for which the Consumer is requesting current property settings. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer.

name[] is the array of property names the Consumer is requesting. A null array MUST be treated as a request to enumerate the current transparent state of the entity.

property[] is an array of properties.
[RT]Note: The following need further discussion as to whether they are to be included in this specification.

The following enable setting transparent runtime state on an entity.

interactionResponse = setProperties(consumerContext,

 entityContext,

 markupContext,

 properties);

Where:

consumerContext is a datatype defined in Section 11 with a set of references the Producer MAY use for locating the current state of an entity. This includes a flag indicating whether or not the Consumer is interested in receiving back the current transparent state of the entity as a property array.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity the Producer MUST use for processing the invocation. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer.

markupContext is a data type defined in Section 11 with a set of references related to the current request which the Producer MAY use for processing the request.

properties is an array of properties that are to be used to modify the transparent portion of the entity/session state.

interactionResponse is an extensible data structure, defined in Section 11, which includes:

property[] = getProperties(consumerContext,

 entityContext,

 markupContext,

 name[]);

Where:

consumerContext is a datatype defined in Section 11 with a set of references the Producer MAY use for locating the current state of an entity. This includes a reference to the entity whose properties are being requested.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity the Producer MUST use for processing the request. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer.

markupContext is a data type defined in Section 11 with a set of references related to the current request which the Producer MAY use for processing the request.

name[] is the array of property names the Consumer is requesting. A null array MUST be treated as a request to enumerate the current transparent state of the entity.

property[] is an array of properties. As a parameter, this array allows the Consumer to pass state to the entity. If the flag in the consumerContext parameter indicates the Consumer is interested in the current transparent state settings, the entity will return these as a property array.

propertyDescription = getPropertyDescription(handle);

Where:

handle provides a context the Producer MAY use to determine which set of properties are to be described.

propertyDescription provides the metadata described in Section 11 for each of the properties scoped by the supplied handle.

9 Security

10 Markup

[RT] Does the mode / window state discussion belong in this section??
10.1 Modes

An entity should render different content and perform different activities depending on the function it is currently performing. This specification defines a base set of functions according to those defined in the portlet specification. They are referred to as modes.
An entity must support the modes VIEW, EDIT, and HELP, and may support the mode, CONFIG. During a getMarkup() call the Consumer indicates to the entity its current mode via the request data object.

10.1.1 VIEW Mode

In general, the expected functionality for an entity in the VIEW mode is to display the view of some application data by the entity. The VIEW mode of an entity may include one or more screens that the user can navigate and interact with, or it may consist of static content that does not require any user interaction.

The behavior and the generated content of an entity in the VIEW mode may depend on configuration, personalization and navigational state.

All entities must support the VIEW mode.

10.1.2 EDIT Mode

Within the EDIT mode, an entity should provide content and logic that let a user customize the behavior of the entity. The EDIT mode may include one or more screens between which users can navigate to enter their customization data.

Typically, entities in EDIT mode will set or update entity state by making these changes permanent for the entity.

10.1.3 HELP Mode

When in HELP mode, an entity may provide a simple help screen that explains the entire entity in coherent text or it may provide context-sensitive help.

10.2 Window States

A window state is an indicator of the amount of aggregated page space that will be assigned to the content generated by an entity.

When an entity is invoked to process a request, the window state is provided as a hint given by the Consumer to the entity. The entity may use the window state to decide how much information it should render.
A Consumer SHOULD support the following window states MINIMIZED, NORMAL, and MAXIMIZED.

10.2.1 MINIMIZED Window State

When an entity is in MINIMIZED window state, the getMarkup() method must not be called, and the aggregated page must not display any content for the entity. The Consumer may render the title, controls and decorations for this entity.

10.2.2 NORMAL Window State

The NORMAL window state indicates that an entity may be sharing the page with other entities. It MAY also indicate that the target device has limited display capabilities. Therefore, an entity SHOULD restrict the size of its rendered output in this window state. All entities must support the NORMAL window state.

10.2.3 MAXIMIZED Window State

The MAXIMIZED window state is an indication that an entity may be the only entity being rendered in the aggregated page, or that the entity has more space compared to other entities in the aggregated page. An entity should generate richer content when its window state is MAXIMIZED.

10.2.4 Additional Window States

[CL: Will we allow for user defined window states?]
10.3 URL Considerations
URLs embedded in markup fragment often cannot be direct links to the Producer but must be encoded so that they are intercepted by the Consumer and re-routed back to the Producer. Because the same entity can be instantiated more than once in a single page, encoded URL’s will have to allow the Consumer to track the entity instance to which the request is targeted.
This specification supports two styles of URL encoding, to facilitate the capabilities of the Producer and Consumer with regards to the ability to adapt the generated markup.

10.3.1 Consumer URL Writing
All URLs the Consumer needs to write are demarcated using a token this specification defines both for the start and end of the URL declaration. The contents between this pair of tokens follows the pattern of a querystring (name/value pairs separated by ‘&’ characters) with several well-known parameter names specifying what the Consumer needs in order to both correctly write the URL and then process it when an End-User activates it. This results in an URL declaration of the form:
 {marker}name1=value1&name2=value2 ... {marker}

Where the following well-known names are defined to mean:

wsia:urlType: This controls how the resulting URL is processed when activated. The following values are defined:

Action:

Activation of the URL will result in invoking processInteraction().
Render:

Activation of the URL will result in invoking getMarkup().
Resource:

Activation of the URL will result in the Consumer fetching the underlying resource, possibly in a cached manner, and returning it to the End-User. For the http protocol this maps to a “get” on the underlying resource.
Namespace:
This tells the Consumer that what it is writing is a name that needs to be unique on the aggregated page. While this is not technically a URL, providing this functionality in this manner keeps the performance impacts of the Consumers parsing to a single pass of the markup.
wsia:resource: When urlType is ‘Resource’, this specifies the underlying resource.

wsia:name: When urlType is ‘Namespace’, this specifies the name to be processed

wsia:navigationalState: What should be fed back the entity as navigationalState
wsia:rewriteResource: This is a boolean that informs the Consumer that the resource needs to be parsed for URL rewriting. Normally this means that there are names that will be cross referenced between the markup and this resource (eg. javascript references). Note that this means the Consumer needs to deal with rewriting unique ‘namespaced’ names in a set of documents rather than treating each individually. Consumers MAY want to process such resources in a manner that allows caching of the resulting resource by the End-User’s browser.
10.3.2 Producer URL Writing
This specification also anticipates that entities will be willing to properly write URLs for the Consumer as this decentralizes the preparation of the page for rendering and thereby potentially provides better performance to the End-User. To enable entities optionally offering this service, several properties are defined by which the Consumer MAY indicate how it needs URLs formatted in order to process them properly. These properties all take the form of a simple template, namely:

 http://www.Consumer.com/path?wsia:sessionID={sessionID}&{clientParameters}

Where:

{parameterName} These designate a value the entity is to replace. If there is no value for the defined parameter, the empty string MUST be used as the replacement value. The curly brace characters and the enclosed parameter name MUST be replaced with the appropriate value. Defined parameter names include:

navigationalState: This parameter is used upon URL activation to provide the navigational state needed by the entity in order to process the request.
sessionID: This parameter specifies the sessionID to be used to lookup the local state that was used to generate the markup.
clientParameters: This parameter allows the specification of any additional parameters the entity chooses to place on the URL.
All content outside the {} pairs MUST be treated by the entity as constants the Consumer wishes to receive when the URL is activated.
This specification defines properties of this type with the following names:

wsia:ActionTemplate:

Activation of the URL will result in invoking processInteraction().
wsia:RenderTemplate:

Activation of the URL will result in invoking getMarkup().
wsia:ResourceTemplate:
Activation of the URL will result in the Consumer fetching the underlying resource, possibly in a cached manner, and returning it to the End-User. For the http protocol this maps to a “get” on the underlying resource.
For namespacing, a non-template property is defined:

wsia:NameSpacingPrefix

10.3.3 URL Writing Semantics

1. IF an Entity’s properties include wsia:ActionTemplate, wsia:RenderTemplate, wsia:ResourceTemplate or wsia:NameSpacingPrefix, then it MUST be willing to correctly format URLs for all content it generates.

2. IF the Consumer sets the above properties, then the Entity MUST generate URLs based on those setting and the Consumer is not required to parse the generated markup.
3. IF either the Entity doesn’t expose these properties or the Consumer chooses to not set them, then the Consumer MUST parse the generated markup and rewrite URLs conforming to the above specification.

10.4
10.5 Markup Fragment Rules

Because the markup fragments produced by remote entities are aggregated into a single page by the Consumer, some rules and limitations are needed to ensure the coherence of the resulting page to be displayed to the end user.

10.5.1 Disallowed Tags

Because disallowed tags might potentially have an impact on other entities or even break the whole aggregated page, its inclusion will invalidate the whole markup fragment, which will be replaced by an error message.

10.5.1.1 HTML validation rules

	Disallowed
	Discouraged

	 base
	 link

	 body
	 meta

	 frame
	 style

	 frameset
	

	 head
	

	 html
	

	 title
	

10.5.1.2 XHTML Basic Validation rules

	Disallowed
	Discouraged

	 base
	 link

	 body
	 meta

	 head
	

	 html
	

	 title
	

10.6 CSS-Style Definitions
10.6.1 Links (Anchor)
	Style
	Description

	Will use base <a> tag style attributes.
	

10.6.2 Fonts
	Style
	Description

	.wsia-font
	

	.wsia-font-dim
	

If a entity writer wants a certain font type to be larger or smaller, they should indicate this as a relative size.

Example1: <div class="wsia-font-error" style="font-size: smaller">An Error Occurred.</div>

Example1: <div class="wsia-font-error" style="font-size: 80%">An Error Occurred.</div>

10.6.3 Messages

	Style
	Description

	.wsia-msg-status
	Display status messages

	.wsia-msg-info
	 Help/info messages

	.wsia-msg-error
	Errors

	.wsia-msg-alert
	 Warnings

	.wsia-msg-success
	Successful completion

10.6.4 Tables

Tables can be styled using the section classes. Section is a more general approach that can represent div, span, table, and other types of markup.

10.6.5 Sections

	Proposed
	Description

	wsia-section-header
	

	.wsia-section-body
	

	.wsia-section-alternate
	

	.wsia-section-selected
	

	wsia-section-subheader
	

	wsia-section-footer
	

	wsia-section-background
	

	wsia-section-text
	

10.6.6 Forms

	Proposed
	Description

	.wsia-form-label
	

	.wsia-form-field
	

	.wsia-form-button
	

	
	

	.wsia-icon-label
	Text that appears besides a context dependent action icon.

	.wsia-dlg-icon-label
	Text that appears besides a “standard” icon (e.g. Ok, or Cancel)

	.wsia-form-field-label
	Text for a separator of fields (e.g. checkboxed, etc.)

	.wsia-form-field
	Text for a field (not input field, e.g. checkboxes, etc)

10.6.7 Menus
	Proposed
	Description

	.wsia-menu
	

	.wsia-menu-item
	

	.wsia-menu-item-selected
	

	.wsia-menu-item-hover
	

	.wsia-menu-item-hover-selected
	

	.wsia-menu-cascade-item
	

	.wsia-menu-cascade-item-selected
	

	 .wsia-menu-item-background
	 Menu item background color - highlighted and non-highlighted

	 .wsia-menu-item-selected-background
	

	 .wsia-menu-description-background
	Description box background color and font.

	 .wsia-menu-description
	

	 .wsia-menu-caption
	

	 .wsia-menu-caption-background
	

10.6.8 Portlet
	Proposed
	Description

	.wsia-portlet
	

	.wsia-portlet-head
	

	.wsia-portlet-body
	

	.wsia-portlet-background
	

	
	

	.wsia-portlet-bg-color
	

	.wsia-portlet-bg-image ?
	

	
	

	.wsia-portlet-background-edit
	Allow for different backgrounds in edit and config mode.

	.wsia-portlet-background-config
	Do we need to redefine all styles mode dependent?

 [CL: Is there a possibility that the portal redefines stylesheets for single portlets in a mode dependent way. That way we could omit the background-edit and background-config styles]

11 Data Structures.

It is often necessary to pass data to operations. Wherever possible this specification defines a typed data object as the transport mechanism for such data. Extensibility elements are also provided for vendor or application specific data extensions.

In order to allow extensibility of any data object we define a base class for all data objects that simply includes an untyped property list and a security modifier.

Optional parameters are marked with [O], required parameters with [R]

The defined data structures passed in messages to operations are:

[RT: Do these want to be written in this OO style (allows any of this first set to be passed to releaseHandles()) or a more IDL format that fully specifies the data members of each structure?]

[CL: let’s do it in an IDL style]

Handle extends String

ConsumerHandle extends Handle

EntityHandle extends Handle

ProducerOfferedEntityHandle extends EntityHandle

ConsumerConfiguredEntityHandle extends EntityHandle

SessionID extends Handle

Property

[R] String

name

[O] String

datatype

[O] String

value

[O] String

scope

[O] boolean

required
Members:
name

Name of the property, must not be null

datatype
Definition of the Property’s datatype (default is “xsd:string”). This data member SHOULD only be specified in the metadata that describes a property to the Consumer and not on any invocation that sets properties.

value

String representation of the property’s value. The interpreter is responsible for serializing and deserializing the correct value type.

scope

Scope for this property. Default value is “Session”.

required
Boolean to indicate whether this property is required. Default value is “false”.
RegistrationData

[R] Property
(name = consumerName)

[O] Property
(name = consumerVendor)

[O] String[]

userProfileExtensions

[O] Property[]
registrationProperties

Members:
consumerName

Globally unique name that identifies the Consumer. [R355]

consumerVendor

Name and version of the Consumer vendor. [R356]

userProfileExtensions
An array of named extensions to the user profile defined in this specification

registrationProperties
List of registration properties. The names of these properties MUST be from the set declared in the RegistrationData array from the Producer’s service description and are not part of this specification.

ConsumerContext

[R] Handle

consumerHandle

[O] String

consumerState

[O] String

userID

[O] boolean
sendTransparentState

[O] Property[]
extensions

Members:
consumerHandle

An opaque reference to the Consumer-Producer relationship. This opaque reference is generated by the registerConsumer() operation. [R355]

consumerState

An opaque string the Producer MAY use to store the state for this Consumer registration. If this field is non-null the Consumer must persist it with the consumerhandle. The Consumer must return this value on any consecutive calls in the same consumerContext.

userID

An opaque reference to the End-User’s profile (separately supplied). [RT: This field is under discussion by the WSRP-security subgroup. This version requires a separate operation (no yet in this draft) for setting the user profile, though this operation could be targeted at a Producer level. The other possibility under discussion is sending the profile information with each invocation. The advantage of the first is reduced payloads on messages and likely lower security requirements on most invocations. The advantage of the second is reduced exposure of information.]

sendTransparentState
This boolean allows a Consumer to indicate that it is interested in the transparent state of the entity. When set to true, the Producer SHOULD include the transparent state of the entity in any return messages that permit its inclusion. Default value is false.

extensions

An array of properties for use when implementations choose to extend this structure.
EntityContext

[R] Handle

entityHandle

[O] Property[]
entityProperties

[O] String

entityState

[O] boolean

modifiedProperties

[O] Property[]
extensions

Members:
entityHandle

An opaque reference to the entity targeted by the invocation. This may either be a ProducerOfferedEntity or a ConsumerConfiguredEntity.

entityProperties

Array of entity properties. The names of these properties MUST be from the set declared in the entityProperties array from the EntityType data element in the service description.

entityState

An opaque string the entity MAY use to store its entire state. If the Producer returns a non-null value, the Consumer MUST return this value on any consecutive calls to the same entity.
Note that such uses MAY span various cyclings of the Consumer and therefore this MUST be persisted by the Consumer.

modifiedProperties
A boolean a Consumer MUST set if supplying modified values in the properties field. If set to ‘true’, the Producer MUST process the supplied properties as if modifyEntity() had been invoked immediately before the current invocation. The default value of this field is ‘false’.

extensions

An array of properties for use when implementations choose to extend this structure.

MarkupContext

[O] String

sessionGroupID

[O] String

sessionID

[R] Clientdata
clientData

[R] String

locale

[O] String

navigationalState

[O] Integer
currentMode

[O] Integer
previousMode

[O] Integer
windowState

[O] String

characterSet

[O] String

markupType

[O] Property[]
httpHeaders

[O] boolean
secureClientCommuncations

[O] Property[]
extensions

Members:
sessionGroupID

A reference supplied by the Consumer which the Producer MAY use when establish a session for an entity storing local state. This reference MAY be the same for several entities. In this case the Producer SHOULD establish a session with both private and shared areas for the entity’s use. . The Producer SHOULD only inspect the value of this field when it is in the process of creating a new session.

sessionID

The reference returned by the Producer in a previous invocation which allows it to look up locally stored state.

clientData

A structure defined elsewhere in this section that provides information about the client device which will render the markup.

locale

Locale to generate the markup for.

navigationalState
Opaque state for this entity from the immediately preceeding invocation of the Producer.

currentMode

The mode the entity should render its output for (e.g. view, edit, config, help, design, preview). See definition of these constants elsewhere in this appendix.

previousMode

The previous mode (if any) the entity rendered its output for.

windowState

The state of this entity’s virtual window relative to other entities on the aggregated page (e.g. normal, minimized, maximized). See definition of these constants elsewhere in this appendix.

characterSet

characterset used for encoding (e.g. UTF8, maybe different from the character set used for the transport.

markupType

Markup type to generate (e.g. HTML, XHTML, cHTML).

httpHeaders

Http headers of the initial request.

secureClientCommunications
Is the client-Consumer connection secured?

extensions

An array of properties for use when implementations choose to extend this structure.
MarkupResponse

[O] String
markup

[O] String
sessionID

[O] int

expires

Members:
markup

The markup to be used for visualizing the current state of the entity.

sessionID
Opaque handle to Producer stored state for the entity.

expires
An int value for the number of seconds before the state represented by SessionID will be “timed out” by the Producer and the resources reclaimed. A value of –1 means the Producer does not time out this state.

InteractionContext

[O] String

sessionGroupID

[O] String

sessionID

[R] String

locale

[O] Integer
currentMode

[O] Integer
previousMode

[O] Integer
windowState

[O] Property[]
httpHeaders

[O] Property[]
clientParameters

[O] String

uploadData

[O] boolean
secureClientCommuncations

[O] Property[]
extensions

Members:
sessionGroupID

A reference supplied by the Consumer which the Producer MAY use when establish a session for an entity storing local state. This reference MAY be the same for several entities. In this case the Producer SHOULD establish a session with both private and shared areas for the entity’s use.

sessionID

The reference returned by the Producer in a previous invocation which allows it to look up locally stored state.

locale

Locale to generate the markup for.

currentMode

The mode the entity should render its output for (e.g. view, edit, config, help, design, preview). See definition of these constants elsewhere in this appendix.

previousMode

The previous mode (if any) the entity rendered its output for.

windowState

The state of this entity’s virtual window relative to other entities on the aggregated page (e.g. normal, minimized, maximized). See definition of these constants elsewhere in this appendix.

httpHeaders

Http headers of the initial request.

clientParameters

Request parameters of the initial request. Name/value pairs from a client post are parsed into this list of properties.

uploadData

Data blob if a file is to be uploaded [CL: Axis limits soap messages to 500K.] [Evaluate the use of SOAP attachments and/or DIME]

secureClientCommunications
Is the client-Consumer connection secured?

extensions

An array of properties for use when implementations choose to extend this structure.
InteractionResponse

[O] String

navigationalState

[O] String

sessionID

[O] int

expires

[O] boolean

stateChanged

[O] int

newWindowState

[O] int

newMode

[O] String

redirectURL

[O] Property[]
extensions

Members:
navigationalState
Opaque respresentation of navigational state which the entity is returning to the Consumer. The Consumer MUST supply this on the next invocation such that the correct state of the entity is used when processing that invocation.

sessionID

Opaque handle to Producer stored state for the entity.

expires

An int value for the number of seconds before the state represented by SessionID will be “timed out” by the Producer and the resources reclaimed. A value of –1 means the Producer does not time out this state.

stateChanged

This boolean informs the Consumer whether or not it needs to process navigationalState as having been modified relative to the version supplied with the invocation generating this response. [RT: An alternative to returning this boolean is assigning this semantic meaning to returning a null for navigationalState.]

[CL: I agree. It would make more sense to only return the state if something has changed.]

newWindowState

The window state the entity needs for its next markup generation. This data item MAY NOT be included unless the value is different than the current windowState.

newMode

The mode the entity needs for its next markup generation. This data item MAY NOT be included unless the value is different than the current mode.

redirectURL

As a result of processing this interaction, the entity is redirecting the Consumer to a different URL. [RT: Semantics? Does this replace the contents of the entity’s block on the page? Does this replace the entire page?]

[CL: Why do we need this? What about SOAP services that do not have a URL (like RMI based services)?]

extensions

An array of properties for use when implementations choose to extend this structure.
EntityType

[R] String

name

[R] Handle

entityHandle

[O] URL

wsdlURL

[O] String[]

locales

[O] String[]

description

[O] String[]

titles

[O] String[]

roles

[O] String[]

keywords

[O] String[]

markupTypes

[O] Integer

modes

[O] Integer

viewStates

[O] boolean
cacheability

[O] Property[]
entityProperties

[O] Property[]
extensions

Members:
name

The name for the entity (e.g. “Stock Quote”).

entityHandle
The handle by which Consumers MAY refer to this offered entity.

wsdlURL

The URL for the WSDL description of this entity.

locales[]

The list of locales supported by the entitiy.

description[]
Descriptions of the entity for all supported locales. This SHOULD be displayed on selection dialogs, etc.

titles[]

Title for the entity for all supported locales.

roles[]

List of roles the entity can manage. Note: This support MAY be provided by the Producer service on behalf of the entity. The entity can freely define any role it wants, however there exists a set of predefined roles in this appendix. [R416]

keywords[]
Key words describing the entity which can be used for search, etc.

markupTypes[]
The different markup languages supported by the entity, e.g. HTML, XHTML, WML, VoiceXML, cHTML, …

modes

The modes that are supported by the entity (e.g. view, edit, config, help, design, preview). Mode constants are defined elsewhere in this section as factors of 2 such that this integer may represent the full set of supported modes as a bit-vector.

viewStates
The viewStates that are supported by the entity (eg. minimized, normal, maximized, …). These constants are is defined elsewhere in this section as factors of 2 such that this integer may represent the full set of supported viewStates as a bit-vector.

cacheability
Information on how caching may be applied, including expiry times and indication on whether content is personal or shared.[RT: Either this needs to become a structure of its own or the description changed to indicate it only reflects whether the document fragments may be cached at all]

entityProperties
List of properties the entity exposes as its transparent state.

extensions
An array of properties for use when implementations choose to extend this structure.

Description

[R] DocFragment
wsdl

[O] Property[]

extensions

ServiceDescription extends Description

[R] EntityType[]
entities

[O] Property[]

registrationData

EntityDescription extends Description

[R] EntityType
entity

ClientData

[R] String
userAgent

[R] String
deviceInfo

Members:
userAgent

String identifying the UserAgent of the End-User.

deviceInfo
Type of device rendering the markup to the End-User.

(The complete list will have to be worked out by the markup subcommittee and may have to be in sync with the description that goes to UDDI directories).

MetaData

These can be placed in the WSDL description of the service/entity using the tag <wsia:metadata>. Child elements MAY include:

<wsia:roles>

<wsia:entity>

…

[RT: Do the metadata items from the structures above want to also be explicit element types here?]

Roles

	User
	Need some semantic definitions!

	Administrator
	

	PageDesigner
	

	
	

Constants

	1
	VIEW_MODE

	2
	EDIT_MODE

	4
	CONFIG_MODE

	8
	HELP_MODE

	16
	DESIGN_MODE

	32
	PREVIEW_MODE

	
	

	1
	VIEW_NORMAL

	2
	VIEW_MINIMIZED

	4
	VIEW_MAXIMIZED

	8
	VIEW_DETACHED

	
	

	
	

	
	

12 WSDL Interface Definition

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions
targetNamespace="http://schemas.oasis-open.org/wsrp"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:impl="http://schemas.oasis-open.org/wsrp-impl"

xmlns:intf="http://schemas.oasis-open.org/wsrp"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://wsrp.oasisopen.org"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>

<schema
targetNamespace="http://wsrp.oasisopen.org"

xmlns="http://www.w3.org/2001/XMLSchema">

<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

<complexType name="Property">

<sequence>

<element name="name"

nillable="true" type="soapenc:string"/>

<element name="datatype" nillable="true" type="soapenc:string"/>

<element name="value"

nillable="true" type="soapenc:string"/>

<element name="scope"

nillable="true" type="soapenc:string"/>

<element name="required" type="xsd:boolean"/>

</sequence>

</complexType>

<complexType name="PropertyArray">

<complexContent>

<restriction base="soapenc:array">

<sequence>

<element name="Property" type="tns:Property" maxOccurs="unbounded"/>

</sequence>

</restriction>

</complexContent>

</complexType>

<complexType name="StringArray">

<complexContent>

<restriction base="soapenc:array">

<sequence>

<element name="string" type="soapenc:string" maxOccurs="unbounded"/>

</sequence>

</restriction>

</complexContent>

</complexType>

<complexType name="RegistrationDataType">

<sequence>

<element name="consumerName" nillable="true" type="tns:Property"/>

<element name="consumerVendor" nillable="true" type="tns:Property"/>

<element name="userProfileExtensions" nillable="true" type="tns:StringArray"/>

<element name="registrationProperties" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexType>

<element name="RegistrationData" nillable="true" type="tns:RegistrationDataType"/>

<complexType name="ConsumerContextType">

<complexContent>

<sequence>

<element name="consumerHandle" nillable="true" type="soapenc:string"/>

<element name="consumerState" nillable="true" type="soapenc:string"/>

<element name="userID" nillable="true" type="soapenc:string"/>

<element name="sendTransparentState" type="xsd:boolean"/>

<element
name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

<element name="ConsumerContext" nillable="true" type="tns:ConsumerContextType"/>

<complexType name="EntityContextType">

<complexContent>

<sequence>

<element name="entityHandle" nillable="true" type="soapenc:string"/>

<element name="entityProperties" nillable="true" type="tns:PropertyArray"/>

<element name="entityState" nillable="true" type="soapenc:string"/>

<element name="expires" type="xsd:int"/>

<element name="modifiedParameters" type="xsd:boolean"/>

<element name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

<element name="EntityContext" nillable="true" type="tns:EntityContextType"/>

<complexType name="ClientDataType">

<complexContent>

<sequence>

<element name="userAgent" nillable="true" type="soapenc:string"/>

<element name="deviceinfo" nillable="true" type=" soapenc:string "/>

</sequence>

</complexContent>

</complexType>

<element name="ClientData" nillable="true" type="tns:ClientDataType"/>

<complexType name="MarkupContextType">

<complexContent>

<sequence>

<element name="sessionGroupID" nillable="true" type="soapenc:string"/>

<element name="sessionID" nillable="true" type="soapenc:string"/>

<element name="clientData" nillable="true" type="tns:ClientDataType"/>

<element name="locale" nillable="true" type="soapenc:string"/>

<element name="navigationalState" nillable="true" type="soapenc:string"/>

<element name="currentMode" type="xsd:int"/>

<element name="previousMode" type="xsd:int"/>

<element name="windowState" type="xsd:int"/>

<element name="characterSet" nillable="true" type="soapenc:string"/>

<element name="markupType" nillable="true" type="soapenc:string"/>

<element name="httpHeaders" nillable="true" type="tns:PropertyArray"/>

<element name="secureClientCommunications" type="xsd:boolean"/>

<element
name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

<element name="MarkupContext" nillable="true" type="tns:MarkupContextType"/>

<complexType name="MarkupResponseType">

<complexContent>

<sequence>

<element name="markup" nillable="true" type="soapenc:string"/>

<element name="sessionID" nillable="true" type="soapenc:string"/>

<element name="expires" type="xsd:int"/>

</sequence>

</complexContent>

</complexType>

<element name="MarkupResponse" nillable="true" type="tns:MarkupResponseType"/>

<complexType name="InteractionContextType">

<complexContent>

<sequence>

<element name="sessionGroupID" nillable="true" type="soapenc:string"/>

<element name="sessionID" nillable="true" type="soapenc:string"/>

<element name="locale" nillable="true" type="soapenc:string"/>

<element name="currentMode" type="xsd:int"/>

<element name="previousMode" type="xsd:int"/>

<element name="windowState" type="xsd:int"/>

<element name="httpHeaders" nillable="true" type="tns:PropertyArray"/>

<element name="clientParams" nillable="true" type="tns:PropertyArray"/>

<element name="uploadData" nillable="true" type="soapenc:string"/>

<element name="secureClientCommunications" type="xsd:boolean"/>

<element
name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

 <element name="InteractionContext" nillable="true" type="tns:InteractionContextType"/>

<complexType name="InteractionResponseType">

<complexContent>

<sequence>

<element name="navigationalState" nillable="true" type="soapenc:string"/>

<element name="sessionID" nillable="true" type="soapenc:string"/>

<element name="expires" type="xsd:int"/>

<element name="newWindowState" type="xsd:int"/>

<element name="newMode" type="xsd:int"/>

<element name="redirectURL" nillable="true" type="soapenc:string"/>

<element
name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

<element name="InteractionResponse" nillable="true" type="tns:InteractionResponseType"/>

<complexType name="EntityType">

<complexContent>

 <sequence>

<element name="name" nillable="true" type="soapenc:string"/>

<element name="entityHandle" nillable="true" type="soapenc:string"/>

<element name="wsdlURL" nillable="true" type="soapenc:string"/>

<element name="locales" nillable="true" type="tns:StringArray"/>

<element name="description" nillable="true" type=" tns:StringArray "/>

<element name="titles" nillable="true" type=" tns:StringArray "/>

<element name="roles" nillable="true" type=" tns:StringArray "/>

<element name="keywords" nillable="true" type=" tns:StringArray "/>

<element name="markupTypes" nillable="true" type=" tns:StringArray "/>

<element name="modes" type="xsd:int"/>

<element name="viewStates" type="xsd:int"/>

<element name="cachability" type="xsd:boolean"/>

<element name="entityProperties" nillable="true" type="tns:PropertyArray"/>

<element
name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

<complexType name="EntityTypeArray">

<complexContent>

<restriction base="soapenc:array">

<sequence>

<element name="EntityType" type="tns:EntityType" maxOccurs="unbounded"/>

</sequence>

</restriction>

</complexContent>

</complexType>

<complexType name="DescriptionType">

<complexContent>

<sequence>

<element name="wsdlDescription" nillable="true" type="soapenc:string"/>

</sequence>

</complexContent>

</complexType>

<complexType name="ServiceDescriptionType">

<complexContent>

<extension base="tns:DescriptionType">

<sequence>

<element name="entities" nillable="true" type="tns1:EntityTypeArray"/>

<element name="registrationData" nillable="true" type="tns:PropertyArray"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="ServiceDescription" nillable="true" type="tns:ServiceDescriptionType"/>

<complexType name="EntityDescriptionType">

<complexContent>

<extension base="tns:DescriptionType">

<sequence>

<element name="entity" nillable="true" type="tns1:EntityType"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="ServiceDescription" nillable="true" type="tns:ServiceDescriptionType"/>

</schema>

</wsdl:types>

<wsdl:message name="getDescriptionRequest">

<wsdl:part name="handle" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getDescriptionResponse">

<wsdl:part name="return" type="tns:DescriptionType"/>

</wsdl:message>

<wsdl:message name="registerConsumerRequest">

<wsdl:part name="in0" type="tns:RegistrationDataType"/>

</wsdl:message>

<wsdl:message name="registerConsumerResponse">

<wsdl:part name="return" type="tns:ConsumerContextType"/>

</wsdl:message>

<wsdl:message name="modifyConsumerRequest">

<wsdl:part name="in0" type="tns:ConsumerContextType"/>

<wsdl:part name="in1" type="tns:RegistrationDataType"/>

</wsdl:message>

<wsdl:message name="modifyConsumerResponse">

<wsdl:part name="return" type="tns:ConsumerContextType"/>

</wsdl:message>

<wsdl:message name="cloneEntityRequest">

<wsdl:part name="in0" type="tns:ConsumerContextType"/>

<wsdl:part name="handle" type="soapenc:string"/>

<wsdl:part name="entityProperties" type="tns:PropertyArray"/>

</wsdl:message>

<wsdl:message name="cloneEntityResponse">

<wsdl:part name="return" type="tns:EntityContextType"/>

</wsdl:message>

<wsdl:message name="modifyEntityRequest">

<wsdl:part name="in0" type="tns:ConsumerContextType"/>

<wsdl:part name="in1" type="tns:EntityContextType"/>

</wsdl:message>

<wsdl:message name="modifyEntityResponse">

<wsdl:part name="return" type="tns:EntityContextType"/>

 </wsdl:message>

<wsdl:message name="releaseHandlesRequest">

<wsdl:part name="in0" type="tns:StringArray"/>

</wsdl:message>

<wsdl:message name="releaseHandlesResponse">

<wsdl:part name="return" type="tns:StringArray"/>

</wsdl:message>

<wsdl:message name="getMarkupRequest2">

<wsdl:part name="in0" type="tns:ConsumerContextType"/>

<wsdl:part name="in1" type="tns:EntityContextType"/>

</wsdl:message>

<wsdl:message name="getMarkupResponse2">

<wsdl:part name="return" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="performInteractionRequest">

<wsdl:part name="in0" type="tns:ConsumerContextType"/>

<wsdl:part name="in1" type="tns:EntityContextType"/>

<wsdl:part name="in2" type="tns:InteractionContextType"/>

</wsdl:message>

<wsdl:message name="performInteractionResponse">

<wsdl:part name="return" type="tns:InteractionResponseType"/>

</wsdl:message>

<wsdl:message name="getMarkupRequest">

<wsdl:part name="in0" type="tns:ConsumerContextType"/>

<wsdl:part name="in1" type="tns:EntityContextType"/>

<wsdl:part name="in2" type="tns:MarkupContextType"/>

</wsdl:message>

<wsdl:message name="getMarkupResponse">

<wsdl:part name="return" type="tns:MarkupResponseType"/>

</wsdl:message>

<wsdl:message name="setPropertiesRequest1">

<wsdl:part name="in0" type="tns:ConsumerContextType"/>

<wsdl:part name="in1" type="tns:EntityContextType"/>

</wsdl:message>

<wsdl:message name="setPropertiesResponse1">

<wsdl:part name="return" type="tns:PropertyArray"/>

</wsdl:message>

<wsdl:message name="getPropertiesRequest1">

<wsdl:part name="in0" type="tns:ConsumerContextType"/>

<wsdl:part name="in1" type="tns:EntityContextType"/>

<wsdl:part name="in2" type="tns:StringArray"/>

</wsdl:message>

<wsdl:message name="getPropertiesResponse1">

<wsdl:part name="return" type="tns:PropertyArray"/>

</wsdl:message>

<wsdl:message name="setPropertiesRequest">

<wsdl:part name="in0" type="tns:ConsumerContextType"/>

<wsdl:part name="in1" type="tns:EntityContextType"/>

<wsdl:part name="in2" type="tns:MarkupContextType"/>

<wsdl:part name="in3" type="tns:PropertyArray"/>

</wsdl:message>

<wsdl:message name="setPropertiesResponse">

<wsdl:part name="return" type="tns:InteractionResponseType"/>

</wsdl:message>

<wsdl:message name="getPropertiesRequest">

<wsdl:part name="in0" type="tns:ConsumerContextType"/>

<wsdl:part name="in1" type="tns:EntityContextType"/>

<wsdl:part name="in2" type="tns:RequestContextType"/>

<wsdl:part name="in3" type="tns:StringArray "/>

</wsdl:message>

<wsdl:message name="getPropertiesResponse">

<wsdl:part name="return" type="tns:PropertyArray "/>

</wsdl:message>

<wsdl:message name="getPropertyDescriptionRequest">

<wsdl:part name="handle" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getPropertyDescriptionResponse">

<wsdl:part name="return" type="soapenc:string"/>

</wsdl:message>

<wsdl:portType name="WSRPPortType">

<wsdl:operation name="getDescription" parameterOrder="handle">

<wsdl:input message="intf:getDescriptionRequest" name="getDescriptionRequest"/>

<wsdl:output message="intf:getDescriptionResponse" name="getDescriptionResponse"/>

</wsdl:operation>

<wsdl:operation name="registerConsumer" parameterOrder="in0">

<wsdl:input message="intf:registerConsumerRequest" name="registerConsumerRequest"/>

<wsdl:output message="intf:registerConsumerResponse" name="registerConsumerResponse"/>

</wsdl:operation>

<wsdl:operation name="modifyConsumer" parameterOrder="in0 in1">

<wsdl:input message="intf:modifyConsumerRequest" name="modifyConsumerRequest"/>

<wsdl:output message="intf:modifyConsumerResponse" name="modifyConsumerResponse"/>

</wsdl:operation>

<wsdl:operation name="cloneEntity" parameterOrder="in0 handle entityProperties">

<wsdl:input message="intf:cloneEntityRequest" name="cloneEntityRequest"/>

<wsdl:output message="intf:cloneEntityResponse" name="cloneEntityResponse"/>

</wsdl:operation>

<wsdl:operation name="modifyEntity" parameterOrder="in0 in1">

<wsdl:input message="intf:modifyEntityRequest" name="modifyEntityRequest"/>

<wsdl:output message="intf:modifyEntityResponse" name="modifyEntityResponse"/>

</wsdl:operation>

<wsdl:operation name="releaseHandles" parameterOrder="in0">

<wsdl:input message="intf:releaseHandlesRequest" name="releaseHandlesRequest"/>

<wsdl:output message="intf:releaseHandlesResponse" name="releaseHandlesResponse"/>

</wsdl:operation>

<wsdl:operation name="getMarkup" parameterOrder="in0 in1">

<wsdl:input message="intf:getMarkupRequest2" name="getMarkupRequest2"/>

<wsdl:output message="intf:getMarkupResponse2" name="getMarkupResponse2"/>

</wsdl:operation>

<wsdl:operation name="performInteraction" parameterOrder="in0 in1 in2">

<wsdl:input message="intf:performInteractionRequest" name="performInteractionRequest"/>

<wsdl:output message="intf:performInteractionResponse" name="performInteractionResponse"/>

</wsdl:operation>

<wsdl:operation name="getMarkup" parameterOrder="in0 in1 in2">

<wsdl:input message="intf:getMarkupRequest" name="getMarkupRequest"/>

<wsdl:output message="intf:getMarkupResponse" name="getMarkupResponse"/>

</wsdl:operation>

<wsdl:operation name="setProperties" parameterOrder="in0 in1">

<wsdl:input message="intf:setPropertiesRequest1" name="setPropertiesRequest1"/>

<wsdl:output message="intf:setPropertiesResponse1" name="setPropertiesResponse1"/>

</wsdl:operation>

<wsdl:operation name="getProperties" parameterOrder="in0 in1 in2">

<wsdl:input message="intf:getPropertiesRequest1" name="getPropertiesRequest1"/>

<wsdl:output message="intf:getPropertiesResponse1" name="getPropertiesResponse1"/>

</wsdl:operation>

<wsdl:operation name="setProperties" parameterOrder="in0 in1 in2 in3">

<wsdl:input message="intf:setPropertiesRequest" name="setPropertiesRequest"/>

<wsdl:output message="intf:setPropertiesResponse" name="setPropertiesResponse"/>

</wsdl:operation>

<wsdl:operation name="getProperties" parameterOrder="in0 in1 in2 in3">

<wsdl:input message="intf:getPropertiesRequest" name="getPropertiesRequest"/>

<wsdl:output message="intf:getPropertiesResponse" name="getPropertiesResponse"/>

</wsdl:operation>

<wsdl:operation name="getPropertyDescription" parameterOrder="in0">

<wsdl:input message="intf:getPropertyDescriptionRequest" name="getPropertyDescriptionRequest"/>

<wsdl:output message="intf:getPropertyDescriptionResponse" name="getPropertyDescriptionResponse"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="WSRPServiceSoapBinding" type="intf:WSRPPortType">

<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="getPropertyDescription">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getPropertyDescriptionRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getPropertyDescriptionResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="performInteraction">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="performInteractionRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="performInteractionResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="performInteraction">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="performInteractionRequest1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="performInteractionResponse1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="performInteraction">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="performInteractionRequest2">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="performInteractionResponse2">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getProperties">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getPropertiesRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getPropertiesResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getProperties">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getPropertiesRequest1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getPropertiesResponse1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="setProperties">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="setPropertiesRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="setPropertiesResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="setProperties">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="setPropertiesRequest1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="setPropertiesResponse1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getMarkup">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getMarkupRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getMarkupResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getMarkup">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getMarkupRequest1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getMarkupResponse1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getMarkup">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getMarkupRequest2">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getMarkupResponse2">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="releaseHandles">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="releaseHandlesRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="releaseHandlesResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="modifyEntity">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="modifyEntityRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="modifyEntityResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="createEntity">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="createEntityRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="createEntityResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="modifyConsumer">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="modifyConsumerRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="modifyConsumerResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="registerConsumer">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="registerConsumerRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="registerConsumerResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getServiceDescription">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getServiceDescriptionRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getServiceDescriptionResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="WSRPServiceService">

<wsdl:port binding="intf:WSRPServiceSoapBinding" name="WSRPService">

<wsdlsoap:address location="http://cieplytp:8080/WSRPService"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

13 References

13.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this specification:

· Jane Doe, Example Corp.

· A. Nonymous (chair), Example Corp.

· John Smith, Example Corp.

· Karl Best, OASIS

· John Doe, Other Examples, Inc.

· Eve Maler, Sun Microsystems

· Norman Walsh, Sun Microsystems

Appendix B. Revision History

	Rev
	Date
	By Whom
	What

	wd-00
	2002-04-26
	Eve Maler
	Initial version

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

� � HYPERLINK "http://java.sun.com/j2ee/" ��http://java.sun.com/j2ee/�

� � HYPERLINK "http://www.microsoft.com/net/" ��http://www.microsoft.com/net/�

� � HYPERLINK "http://www.w3.org/TR/SOAP/" ��http://www.w3.org/TR/SOAP/�

� � HYPERLINK "http://www.uddi.org/specification.html" ��http://www.uddi.org/specification.html�

� � HYPERLINK "http://www.w3.org/TR/wsdl" ��http://www.w3.org/TR/wsdl�

� � HYPERLINK "http://www.uddi.org/specification.html" ��http://www.uddi.org/specification.html�

� � HYPERLINK "http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html" ��http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html�

� � HYPERLINK "http://lcweb.loc.gov/standards/iso639-2/langcodes.html" ��http://lcweb.loc.gov/standards/iso639-2/langcodes.html�

� � HYPERLINK "http://lcweb.loc.gov/standards/iso639-2/langcodes.html" ��http://lcweb.loc.gov/standards/iso639-2/langcodes.html�

�May return null

�Sessions are orthogonal to entities, properties are attributes of entities, so the session is not required here.

�Sessions are orthogonal to entities, properties are attributes of entities, so the session is not required here.

�Sessions are orthogonal to entities, properties are attributes of entities, so the session is not required here.

�Sessions are orthogonal to entities, properties are attributes of entities, so the session is not required here.

�Only one method is required here (the consumer just registers once).

�Only one method is required here (the consumer just registers once).

Page 24 of 62

