
[image: image1.png]OASIS

WSIA Customization

Working Draft 00, dd mmm yyyy

Document identifier:

wd-wsia-cust-00 (PDF, Word)

Location:

http://www.oasis-open.org/committees/wsia
Editors:

Timothy Jones, CrossWeave <tim@crossweave.com>

Ravi Konuru, IBM <rkonuru@us.ibm.com>

Contributors:

Terry Cline, Peregrine Systems

Shankar Ramaswamy IBM

Eilon Reshef, WebCollage

Rich Thompson, IBM

Charles Wiecha, IBM

Kirk Wilson, Computer Associates

Your Name Here If Missed

Abstract:

This specification defines the mechanism whereby a WSIA Consumer may customize at runtime the presentation generated by a WSIA Producer.

Status:

This is a Working Draft.

If you are on the wsia@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to the wsia-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to wsia-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright © 2001, 2002 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

41
Introduction

41.1 Presentation-Layer Architecture

41.2 Example of Customized WSIA Application

41.3 Design Goals

41.4 Orthogonal requirements/desirables:

62
Terminology

73
WSIA-WSRP Core Specification

73.1 Description

73.2 Lifecycle

73.3 Markup

73.4 Transparent State

94
Model Instance Value Customization

94.1 Initialization

94.2 Incremental Throughout Interaction

105
Presentation Model Customization

105.1 Via Properties

116
View Alteration

116.1 Data Driven Changes

127
Deferred Topics

127.1.1 Model Instance Access Upon Interaction Termination

127.1.2 Interaction Automation

127.1.3 Defined Content Model for Constraints

127.1.4 First Class Support for Constraints

127.1.5 Well known properties

127.1.6 Consumer Supplied Markup

127.1.7 Producer Callbacks

138
Property Metadata

138.1 General attributes of properties as defined in its description. Independent of whether its a new language or not.

138.1.1 For developer

138.1.2 Open Questions

138.2 How does the properties show up in the data objects of the operations?

169
Interaction and sequencing

1710
How it addresses the scenario requirements (Memory Configurator, Health Insurance, Multimedia sports portal).

1811
References

1811.1 Normative

19Appendix A. Acknowledgments

20Appendix B. Revision History

21Appendix C. Notices

1 Introduction

This document builds upon the WSIA-WSRP Core Specification to illustrate the use of the Transparent State Interfaces (Properties) in implementing runtime customization of presentation models, model instance values, and views.

[tnj] Need more here.

1.1 MVC-Based Presentation Layer Architecture

[tnj] Describe the MVC model as it applies to web apps.

1.2 Example of Customized WSIA Application

As an introduction to WSIA Customization, let us consider a scenario that can benefit from its capabilities. Bob’s Bits 4 Less (Bob’s) is a computer memory reseller, offering for retail sale via its website memory modules for common computers. Bob’s purchases the memory modules from several suppliers, including SafeMem. SafeMem provides a memory configurator as an interactive web service, with which users may identify appropriate memory products for specific computers. Bob’s wishes to integrate the configurator service into it’s retail website, but with the following modifications:

· The styling of the configurator should match the rest of Bob’s website

· The configurator results should include Bob’s realtime inventory status and pricing information

· The configurator results should not include those SafeMem products that Bob’s does not carry.

· The configurator results should include an “Add to Cart” button for each available memory product, which will add the item to the user’s shopping cart on Bob’s website.

This example demonstrates several types of presentation-layer customization applied to an interactive web service:

· Model – the results records produced by the service are augmented with additional fields (inventory status and pricing)

· Model instance – certain results records are altered based on specific criteria (unavailable products are filtered)

· View – the markup generated by the service is being modified (button added)

1.3 Design Goals

[tnj] Needs refinement

· Reduce the Possibility of Run-Time Errors

· Support developers

· Define a starter set of property attributes.

It should be possible to group related properties. (Goal: semantic clarity). Since we already said at F2F that we support changes at the level of data models, we can separate related properties into different models.

· It should be possible to specify the targetSchema hierarchically for these groups with over-rides possible at the property level. (Goals: Semantic clarity, brevity).

· The attribute set MUST be extensible.

· Define what is returned by getPropertyDescriptionSchema

· Define what is returned by operations that return properties in the joint interface today

· Define the processing model wrt to property description and property manipulation.

· The same description should be useful for adminstrative manipulation of a service/entity.

· Property description should be extensible to accomdate more sophisticated use cases (cooperation/coordination, orchestration).

· Utilize existing notation and semantics as appropriate
2 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [RFC2119].

This document builds upon the WSIA/WSRP common glossary available at http://www.oasis-open.org/committees/wsia/glossary/wsia-draft-glossary-03.htm.

3 WSIA-WSRP Core Specification

The WSIA-WSRP Core Specification defines an API and protocol for Producers to supply interactive web service components to Consumers for assembly into interactive web applications for use by end users (although a Consumer could itself also act as a Producer, aggregating services and supplying them to additional Consumers). Methods in the interface are organized into the following groups, which are briefly summarized below; the full description and datatype definitions are located in the Core Specification. All methods are invoked by the Consumer on the Producer.

· Description

· Lifecycle

· Markup

· Transparent State

3.1 Description

The getDescription() method provides a means for a Consumer to discover the capabilities of a Producer in a discovery mechanism agnostic way.

3.2 Lifecycle

The registerConsumer() method provides a means for a Consumer to establish a relationship with a Producer. A handle is returned by the Producer which the Consumer uses in future method invocations to reference the established relationship.

The modifyConsumer() method allows the Consumer to change the parameters of an established relationship with a Producer.

cloneEntity() provides a means for a Consumer to create a unique configuration of a Producer-supplied entity, while modifyEntity() allows for the Consumer to set the configuration of a cloned entity.

Resources associated with Producer-Consumer relationship, or a specific entity established within such a context, are explicity released with the releaseHandles() method. Resources may also be implicitly released by a Producer based on a timeout.

3.3 Markup

The getMarkup() method provides to a Consumer the markup representing the current state of a Producer entity.

The state of an entitity is modified by a Consumer on behalf of an end user with the performInteraction() method.

3.4 Transparent State

The state of a Producer entity read and written using the markup methods described above is opaque to a Consumer, which merely routes the state information between the end user and Producer. The Core Specification does, however, include a mechanism for communicating transparent state directly between Producer and Consumer through Properties.

The getProperties() method returns to the Consumer a list of Properties published by a Producer entitity.

Property values are modifed by a Consumer through the setProperties() method.

Metadata about properties such as datatype and access control are retrieved from the Producer with the getPropertyDescription() method.

The Transparent State mechanism forms the foundation for Consumer-driven customization of user interaction. The following sections describe in detail the implementation of the MVC-based presentation layer architecture using Properties.

4 Instance Value Customization

4.1 Initialization

The Consumer provides the Producer with initial model instance values.

4.2 Incremental Throughout Interaction

The Consumer and/or Producer update the model instance values throughout the user interaction.

5 Presentation Model Customization

The Consumer modifies the type of model entities.

5.1 Via Properties

[tnj] Are we doing this for 1.0?

Each value property as an associated type property. For example, if an instance value is stored in the property named foo, there would be another property named fooType that held the type information for foo.

6 View Customization

Consumer customizes the markup sent by the Producer.

6.1 Data Driven Changes

Consumer sets properties which control markup generation at the Producer..

7 Deferred Topics

Certain issues were considered in the development of this document, but final and complete

resolutions were not included in this edition. These areas are potential subjects for future work of

the WSIA Technical Committee.

7.1.1 Model Instance Access Upon Interaction Termination

The Producer provides to the Consumer the final model instance value upon completion of the user interaction.

7.1.2 Interaction Automation

The Consumer performs actions, such as submitting forms or navigating through pages, on the user’s behalf.

7.1.3 Defined Content Model for Constraints

Instance values stored in properties would conform to a standard format that included their type schema and current value.

7.1.4 First Class Support for Constraints

The Producer/Consumer interface would be augmented with methods for manipulating model types.

7.1.5 Well known properties

A standard set of properties and best practices will be defined for implementing common customization patterns.

7.1.6 Consumer Supplied Markup

The Consumer supplies the Producer with markup templates for insertion into the output stream.

7.1.7 Producer Callbacks

8 Property Metadata

8.1 General attributes of properties as defined in its description. Independent of whether its a new language or not.

versioning of the propertyDescription.

propertyName

propertyDocumentation <synopsis, description)

propertyType (namespace:type) (Should we allow for extensibility elements here like wsdl, like xforms ?)

propertyScope (values: registration, entity, session, page, precedence: page, session, entity, registration), relationship to model? Are we ready to introduce a new concept of model?) Is there any relationship between this scopes at runtime?

propertyAccess (Read, Read/Write, Write, WriteOnce? MustWrite?) use XACML as appropriate

propertyUsage/propertyValidity (When is it valid to manipulate the property? e.g At Initialization, after Initialization), should we call it standard property called navigationalScope?

propertyExtensions (It should be possible to add new attributes in future)

8.1.1 For developer

propertyToolingHint (requirement).

propertyEditor (Seems like a nice idea to be able to specify an editing class per property type, not a requirement)

8.1.2 Open Questions

In general, its clear this specification should allow for extensibilty. Where should we allow extensibility elements, extensions, and restrictions ?

What level does cacheability apply?

8.2 How does the properties show up in the data objects of the operations?

In a getPropertyDescriptionSchema

In a get/setProperties()?

The first provides the description of the properties exported by the entity and related meta-data. The second provides the runtime values of these properties and the mechanism for addressing a particular property. Once we have these specified, adding the notion or revising the notion of properties on other invokable interfaces should be straight forward.

Based on the above design desirables, several iterations were made on the what should be in the description and what should be returned by a getProperties. Here are some of the possibilities starting from the assumption that the there should be some way of grouping related properties.

getPropertyDescription() returns

a) <model>

 <schema .. />

 </model>

 b)

<model id=”ChartingPreferences”>

 <schema .. />

 </model>

<model id=”ChartingElements”>

 <schema .. />

 </model>

Recommendation: Lets use xforms notation to describe models since that is what we have.

getProperties() returns:

<model >

 <schema ... />

 <instance>

 <fg>red</fg>

 <bg>white</bg>

 </instance>

</model>

setProperty("fg", "red");

b)

<model >

 <schema ... />

 <instance>

 <fg>red</fg>

 <bg>white</bg>

 <border>

<left> 5 </left>

<right> 3 </right>

 </border>

 </instance>

</model>

setProperty("border/left", 10);

getBorder().setLeft(10).

${border.left=10}.

c)

<model id="prefs" >

 <schema ... />

 <instance>

 <fg>red</fg>

 <bg>white</bg>

 <border>

<left> 5 </left>

<right> 3 </right>

 </border>

 </instance>

</model>

<model id="weatherprefs" >

 <schema ... />

 <instance>

 <fg>red</fg>

 <bg>white</bg>

 <border>

<left> 5 </left>

<right> 3 </right>

 </border>

 </instance>

</model>

setProperty("instance('weatherprefs')/border/left", 10);

setProperty("weatherprefs./border/left", 10)
9 Interaction and sequencing

1. Properties of an entity/session can be changed in variety of ways.

2. When should the consumer ask for the markup corresponding to a propertyChange.

(setProperties/performAction, getMarkup)

(cloneEntity, setProperties, getMarkup).

3. What can the consumer assume about the relative consistency between property values, it knows about and the properties at the producer.

e.g stockquote.

· We stipulate that a getProperties only returns the properties/models that are at that scope. It is a producer's prerogative to surface as many of the higher-level models to the lower levels.

· Since we stipulate models are independent, changing a model at one level does not affect the others.

· There is assumption here that there is a handle at each level, at least one at the level of entity and one at the level of the session.

-- no page level scope explicitly specified. An entity can be defined to model that if so desired.

Question: Can a description contain models that belong to different scopes? I think we said that is not possible at least for entity and session..

10 Example Scenarios

[tnj] todo

11 References

11.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this specification:

[tnj] todo

Appendix B. Revision History

	Rev
	Date
	By Whom
	What

	wd-00
	
	
	

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

6

wd-wsia-cust-00
wd-wsia-cust-00

4

