Thurs 5-19-05

Sid Askary

2.pm start.

Issue: 1.4. Reviewing the email sent by Peter on 5-9-05 (Msg. 94672): Pull notification

How does the producer advertise?

1) Does it pull

2) Limit on size of message buffer?

3) Is there a time-to-live for messages?

################################# Begin email:

At the end of this email I have given a set of pointers to the email discussion. Here is a summary of the main points
1. Discussion on requirements/use cases

We have talked about a number of these. The main ones appear to be

a) NC applications that are outside a firewall such that the NP (inside the firewall) cannot invoke the NC EPR. We can generalise this to include applications that are unable or unwilling to provide a NC EPR against which the NP can invoke (for example they might be running in a client environment)

b) Lightweight consuming applications communicating with 'heavy-weight' NPs. The NCs do not want to be "fire-hosed" with data, but wish to pick up messages when they are ready for them (see [7]).

There seems to be agreement that we should not be defining a general purpose queue/mailbox mechanism that could be used outside WSN, and we don't define explicit "put" operations, or allow several subscriptions to be multiplexed together.

2. How does an NP advertise pull capability?

Steve's original proposal [1] is that the NP advertises this using the same mechanism as we use for other "policy" advertisement. A subscriber can then retrieve the data by examining the WSDL, calling WS-MetadataExchange, or some other mechanism (possibly WSRP). The sort of things that it could advertise would be

a) Is the NP willing to do this style of PULL notification at all?

b) Is there a limit to the size (bytes) of the message buffer?

c) Is there a stale dateafter which non retrieved messages are removed from the buffer?

William [7] suggests that it would be preferable if we could avoid having to have the NP advertise these things as this introduces a dependency on an advertising mechanism, overcomplicating the work for a simple NP - and also parameters of this sort could be requested by the subscriber.

3. What is the syntax of the message exchanges used to subscribe and to retrieve messages?

Proposal [1] uses the normal Subscribe request, but includes a SubscriptionPolicy element that requests Pull. The subscriber is required to provide a <ConsumerReference> EPR, but this is ignored. Other options that have been discussed (verbally and in email)

- As [1] but make the <ConsumerReference> optional when Pull is requested

- Remove the need for an explicit SubscriptionPolicy - the NP infers it from the absence of a <ConsumerReference>

- Remove the need for an explicit SubscriptionPolicy, but have the subscriber provide the EPR of the service that it is going to pull from. However we aren't defining a general purpose service of this sort.

Proposal [1] made no change to the syntax of the subscribe response, however the EPR that it returned was to a "PullableSubscriptionManager", that performs the normal SubscriptionManager operations (pause/resume/query/delete/[modify] subscriptions) in addition to the new getMessages message exchange.

Alternatives discussed include a modified subscribe response that returns two EPRs (the conventional SubscriptionManager and a new one that supports getMessages), or a putting a new property on the SubscriptionManager that contains the EPR that supports getMessages.

Should getMessages return just a single message, or does the request include a "number of messages" parameter? Consensus appears to be the latter - I presume this would mean that for n>1 the NP would boxcar the messages together.

4. Semantics

The discussion here has been about the nature of the "buffer" used to hold NotificationMessages before they are pulled by the NC.

a) Is it FIFO or FILO?

b) Who (if anyone) specifies its size?

c) Under what circumstances do messages get discarded?

d) Is there any indication that messages have been discarded?

How many of these things should be specified using WSN, versus left to implementor choice?

[1] Steve's proposal http://www.oasis-open.org/apps/org/workgroup/wsn/download.php/11249/pull%20proposal.1.pdf
[2] Sanjay http://www.oasis-open.org/apps/org/workgroup/wsn/email/archives/200502/msg00003.html
[3] William http://www.oasis-open.org/apps/org/workgroup/wsn/email/archives/200502/msg00009.html
[4] Matt Roberts reply to [3] http://www.oasis-open.org/apps/org/workgroup/wsn/email/archives/200502/msg00016.html
[5] Peter http://www.oasis-open.org/apps/org/workgroup/wsn/email/archives/200502/msg00022.html
[6] DMH proposal http://www.oasis-open.org/apps/org/workgroup/wsn/email/archives/200502/msg00031.html
[7] William reply http://www.oasis-open.org/apps/org/workgroup/wsn/email/archives/200502/msg00032.html
[8] DMH reply to William http://www.oasis-open.org/apps/org/workgroup/wsn/email/archives/200502/msg00033.html
[9] Peter http://www.oasis-open.org/apps/org/workgroup/wsn/email/archives/200502/msg00049.html
Peter Niblett

################################### End Email.

First how do you deal with response? (Steve’s suggestion).

Martin: BN can be used without WSRF So should the pull.

David: You can get a fault if the interface does not support it. Then you can

Peter: The requester does not need to provide an EPR.

Option 1:

Request ---------------Req (sub and sub-pull) ----------------------(NP

No EPR + other pull params

(--------------Resp (sub and sub-pull) -------------------------

EPR to subscription [2nd EPR] [+ pull points]

William: We should not make the Subscriptions manager and the pull point the same EPR.

David H: I can see an HTTP end point for the pull and another for the messages.

Lili: For brokers it is very different. For push you don’t need to know where you are getting the messages from (you just subscribe to messages). In the pause and resume does not make a difference.

David S: The subs-management and pull end point should be different (firewall use case).

What does it mean to make pull available in a notification? With push, you don’t know if there has been a failure.

 Peter: These operations have to be applied to both push and pull

Peter: Filters, consumer and policy are the 3 subscription operations allowed.

David H: I am warming up to option 3 in the email (mail box delivery end point). It would still come back in response.

Peter: Use the conventional mechanism. Then use some other mechanism to use the pull point.

David H: Instead of an EPR, use a marker – there is no separate exchange.

Steve: Decouple them. Have another means at getting the mailbox.

William: Then we are not supporting pull notification in BN.

Sanjay: I thought we leave that work to some later spec.

David S: I am sitting outside and I want a number on the inside and I use another outside number to get it.

David H: You can get back a cookie and you could use that to get the EPR.

William: You have the lifecycle of the mailbox to worry about.

Option 2:

Rquester

NP

getpullpoint

------------------------------(

EPR1 (pullpoint)

EPR1

(-----------------------------

Subscribe(filter, EPR2)

------------------------------(

Subscribe Resp (EPR2)

(-----------------------------

Subscription Mgr

EPR1.getMessage

------------------------------(
Martin: This is not Rocket science. It has been done before. You need a pull mechanism because of the firewall.

Sam: Let’s do a straw poll: 8 each for 1st and 2nd option (subscribe for pull, 2 step factory)

Steve: Let me take a couple of minutes to work on option 2. It will meet the following:

1) Simple

2) Additive

3) Minimal perturbation

4) Meets requirements

5) Advertises pull support

Sam: Let me elaborate on option 1:

1) 1 MEP

2) Subscribe [Consumer EPR]

3) Subscribe Response [Subscription EPR, (pull EPR)]

Steve: In option 2, you could optimize, but the basic case follows the same semantic as the BN. So the key is that it is the same entity that is producing the pull point:

Martin: As far as the subscriber goes, all the endpoints are the same.

Lili: Can we create a new subscribe message?

Steve: That is a variation on option 1.

David H: there are always variations on the pull operation.

Steve: NP can have a createPullPoint that is a factory of pull points and the pull point has

destroy, getMessage. Remember that pull point is a separate PortType.

Peter: We need to expose the notify method on the pull point.

Steve: Okay, let’s add the notify operation as well.

Peter: So we need to have a WSDL for PullPoint. How do we define the response in the getMessage.

Peter: Remember that for both options we need a separate porttype (i.e. WSDL). So lets; do a Strawpoll: Result: shows a 10 to 3 in favour of option 2. This part is action agreed.

4: pm – break.

4:15 pm- restart.

Steve: let us define the semantics of getMessage:

It should be “getMessages”

Do we want params on it?

What would the response look like? It is the same as notify.

Martin: What if notify was not used. If it is raw, are you are your own?

Peter: The response message is either raw or wrapped in notify. If EPR defines delivery, then it is not raw anymore. So, the response to a getMessages is a “Notify” message (the reverse of the consumer).

Steve: We can put the raw and wrapped inside the same notify message.

Martin let’s assume that we have a simple model.

Steve: We can have Homogeneous wrap or Singleton. So the editors need to clarify what the response will be (i.e. always wrapped with “notify”).

Peter: now on to the semantics: As a result, are messages coming back in order? Do not specify message order or message buffer limit.

Martin: Yes, it is the reverse of the consumer.

Peter: So we have a

1) create(size) + get(size)

2) create() + get(Max n)

3) create() + get()

So the agreement is for number 2. and the result of get will be a Min inbox that is out of order.

End of issue 1.4.

5:10 PM. Adjourned.

