Description

In this scenario, a portlet Consumer wishes to configure a Producer entity. Let us assume that the portlet in question displays the most recent press releases published to a newswire service for a specific company. The portlet is being integrated into a corporate intranet portal by an administrator, who wishes to configure the company parameter of the portlet such that portal users see their company’s press releases.

Design-Time Interaction Sequence

1. registerConsumer(portal) – the portal establishes a connection with the Producer [only on the first connection]

2. cloneEntity(press release portlet) – the portal clones the press release portlet for configuration [assume Consumer somehow finds the original entity]

3. getPropertyDescription(press release portlet clone) – the portal queries the press release portlet clone for the description of configurable properties

4. getProperties(press release portlet clone) – the portal queries the press release portlet clone for configurable properties’ default values [steps 3&4 could be batched into a single round-trip]

5. setProperties(press release portlet clone, company name/value) – the portal sets the value of company property [returns new entity context reflecting new state]

Property Description

We assume that the portal provides a generic configuration tool which may be used by an administrator to set the value of any portlet property. The getPropertyDescription() method is called by the portal to enumerate the properties published by the portlet and presented to the administrator for editing (for example, by dynamically constructing a form containing the properties as table rows). The getProperties() method is called by the portal to obtain the current values of the properties for defaulting into the form when initially presented. setProperties is used for updating the properties, and retrieving any side-effects the Entity may make on related properties that may change as a result of the explicit changes made by the Consumer.

The current draft protocol does not adequately separate property descriptions and property values, as exchanged in the Property data structure in Section 11 of the draft spec. Both instance and metadata are included in the Property data structure. We therefore introduce the following notation to define properties following the XFORMS model spec, and then show how subsets of this information may be retrieved using the getPropertyDescription operation (the type defs, access info, and scoping), vs get/set value operations which deal with the instance values of the properties themselves.

In sum, the design is to treat WSRP/WSIA properties, both at Entity and Session scopes, as elements in XFORMS models, and to reuse the existing XFORMS spec to describe their type, structure, and exchange instance values rather than proposing a new notation for WSRP/WSIA. Note that both “flat” and “hierarchical” models are possible under full control of the Producer simply by how it chooses to expose its model (i.e. write the model schema) – as a set of top level elements only vs. a hierarchical model.

 In the current draft, the property data structure contains five fields:

· name – property name

· datatype – property value type

· value – property value

· scope – scope of value (Producer, Consumer, Entity, Session)

· required – whether the property must by set by the Consumer

In the current draft, the PropertyArray message type would carry this information as:

<PropertyArray>

<Property>

<Name/>

<Datatype/>

<Value/>

<Scope/>

<Required/>

</Property>

<Property/>

…

</PropertyArray>

These are mapped onto the proposed XFORMS-based propertydescription notation as follows:

 <model id=”MyEntityProperties” Scope=”Entity”>

<schema xlink:href="Schema-MyEntity.xsd"/>

<instance>

<!—current values of property elements – initialization data for the Entity-->

</instance>

</model>

In the press release example, the portlet exposes a single property:

· name – ticker

· datatype – string

· value – <empty>

· scope – Entity

· required – true

 which would be represented as:

<model id=”PressReleaseEntity” scope=”entity”>

<xforms:schema>

<xsd:schema>

<complexType name=”pressportlet”>

<sequence>

<element name=”symbol” type=”xsd:string”/>

</sequence>

</complexType>

</xsd:schema>

</xforms:schema>

<xforms:instance>

<pressportlet>

<symbol>ABCD</symbol>

</pressportlet>

</xforms:instance>

</model>

Property operations

propertyDescription = getPropertyDescription(consumerContext, handle);

propertyDescription would then return just the following elements from the <model> above, omitting the <instance> values:

<model id=”PressReleaseEntity” scope=”entity”>

<xforms:schema>

<xsd:schema>

<complexType name=”pressportlet”>

<sequence>

<element name=”symbol” type=”xsd:string”/>

</sequence>

</complexType>

</xsd:schema>

</xforms:schema>

</model>

property[] = getProperties(consumerContext, entityContext, name[]);

getProperties would now return the <instance> element from the above example giving the current values of all requested property elements in the model. The name array would be encoded as an array of XPATH expressions into the <instance> structure – reducing to a flat list of names in the case where the model is not hierarchical.

property[] = setProperties(consumerContext, entityContext);

This signature is probably broken in the current draft, and needs to return an entityContext or interactioncontext depending on scope (see note below in “issues” section) rather than simply a property array. In any event, the properties being set would be carried inside the entityContext as an <instance> element, i.e. something like:

<instance model=”PressReleaseEntity”>

<pressportlet>

<symbol>XYZ</symbol>

</pressportlet>

</instance>

Rather than as an array of Property data types as in the current draft:

<PropertyArray>

<Property>

<Name>symbol</Name>

<Datatype/> <!—not relevant here (

<Value>XYZ</Value>

<Scope/> <!—not relevant here (

<Required/> <!—not relevant here (

</Property>

…

</PropertyArray>

Combining session and entity scoped models

Once we have the above XFORMS-based notation for properties, we can in the same propertydescription document return information about multiple models managed by the component – at either entity or session scopes. Thus we can partition entity-scoped properties into separate models where desired, perhaps to support Registration-based differentiation of the properties published by an Entity, or to scope the properties based on the “page” being displayed by the Entity.

We can also return multiple model descriptions when they are defined at different scopes, i.e. Entity and Session. An example property description that combines models at these two scopes would be encoded as follows:

<wsrp>

 <model id=”PressEntityProperties” Scope=”Entity”>

<schema xlink:href="Schema-PressEntity.xsd"/>

<instance>

<!—current values of property elements – initialization data for the Entity-->

</instance>

</model>

<model id=”PressSessionProperties” Scope=”Session”>

<schema xlink:href="Schema-PressSession.xsd"/>

<instance>

<!—current values of property elements – initialization data for the Session-->

</instance>

</model>

</wsrp>

Use Case: Interrelated Properties

Description

Administrator is configuring a graphical portlet containing width and height properties in which the aspect ratio is constant; either the width or height may be modified and the other is automatically updated by the Producer. In this example the administrator sets the width and the height is automatically updated.

1. registerConsumer(portal) – the portal establishes a connection with the Producer [only on the first connection]

2. cloneEntity(portlet) – the portal clones the portlet for configuration [assume Consumer somehow finds the original entity]

3. getPropertyDescription(portlet clone) – the portal queries the portlet clone for the description of configurable properties

4. getProperties(portlet clone) – the portal queries the portlet clone for configurable properties’ default values [steps 3&4 could be batched into a single round-trip]

5. setProperties(portlet clone, width) – the administrator sets the value of the width property [returns new entity context reflecting new state]

6. setProperties(portlet clone, height) – the administrator decides that the calculated height is inappropriate and manually adjusts it (causing the width to be automatically recalculated)

Issues

· Need to separate property model from instance values: getProperties() should return instance values and getPropertyDescription() return model

· setProperties() needs to return an entity context

· modifyEntity() seems to be redundant with setProperties() – should drop modifyEntity() (setProperties() is more general)

· if we want to merge entity and session handles, i.e. treat a session handle as an extension of an entity handle, then we probably need to similarly extend the interaction context(s) from entityContext – this would allow setProperty to return the same structure for both entity and session scoped property operations.

