WebSphere software E=—=E=-

business software

How to create proxies for WSRP
(08/27/2002)

Carsten Leue

IBM Software Group

Producer

lll

= One WSRP service may implement one or more different
Interfaces

= Each interface Is defined by an interface WSDL
= Each binding is defined by a binding WSDL that imports the

Interface WSDL
)
Bindingl Interfacel
(HTTP) /" (WSRP base)
V-
2 Binding2
D
=3 (DIME) N
)
D
Binding3 Interface2
(HTTP) (WSRP properties)
~— V-

WebSphere software

Discovery

lll

= For each service a consumer can discover all exposed bindings
and all exposed interfaces
> Via UDDI as tModelinstancelnfos
> Via self-description of the service

= The consumer needs to filter all compatible interfaces and bindings
to connect to the producer

= How can the consumer find out if a binding or interface is the
expected one?
> By analyzing the WSDL -> tedious and error prone

> The WSDL files can be named uniquely so interface and binding can be
defered from the name (next slide)

WebSphere software

lll

= Define a name that contains the protocol, binding and interface
» WSRP <interface>.<binding>

* The publisher of the WSDL MUST ensure that the content of the
WSDL matches the name

= Naming should include a version number

WSRP.base.soap WSRP.base
)
Bindingl Interfacel
(SOAP) /" (WSRP base)
V-
2 Binding2
D
2. (DIME) .
8 WSRP.base.dime
Binding3 Interface2
(SOAP) (WSRP properties)
~— V-
WSRP.properties.soap WSRP.properties

WebSphere software = =55

How a consumer can attach using precompiled proxies

lll

= The consumer finds out about all bindings and interfaces the
service exposes

= The consumer filters this set by supported interfaces. Per definition
the producer must at least expose the WSRP.base interface

= The consumer filters the resulting set by supported bindings. Per
definitions all producers must expose SOAP binding, so the
resulting list will contain at least one binding for each interface

= The consumer sorts the list of bindings per interface by prefered
bindings (e.g. DIME > SOAP-Attachments > SOAP)

= For each interface the consumer selects the best binding

WebSphere software

How a consumer can attach using precompiled proxies

lll

= The consumer Instantiates a precompiled WSRP-proxy for each
binding/interface and points it to the correct access point

= |nthe JAVA case the consumer now instantiates a
java.lang.ref.proxy object and makes it expose all discovered and
supported interfaces

= The consumer delegates each method invokation to the
appropriate WSRP-proxy (e.g. by managing a map between
method object and WSRP-proxy)

WebSphere software

Object Model

Implementation Hints

lll

= How to implement support for multiple WSDL factors using AXIS?
> No hacking
> Keep session across factors

= Example

> Assume that the service exposes the two factors Additive and Substractive
as defined below

Interface Additive {
public int add(int a,int b);
}

I nterface Substractive {
public int sub(int a,int b);

}

WebSphere software

lll

= Compile the JAVA interfaces
= Generate WSDL from JAVA interface

> java org.apache. axi s. wsdl . Java2WsDL -w Interface -0
Addi tive.wsdl comwsrp. Additive

> java org.apache. axi s. wsdl . Java2WsDL -w Interface -0
Substracti ve. wsdl com wsrp. Substractive

= Result

> two interface WSDLs (Addi ti ve. wsdl and Substracti ve. wsdl)

WebSphere software

lll

= (Generate Proxies (Javaspeak = Stubs) for each WSDL factor

> java org.apache. axi s.wsdl . WsDL2Java -v -0 .\
Addi ti ve. wsdl

> java org.apache. axi s.wsdl . WsDL2Java -v -0 .\
Substracti ve. wsdl

= Result

> two helper files for each interface WSDL
— Addi ti ve. j ava that defines the JAVA interface

— Addi t i veSoapBi ndi ngSt ub. j ava that defines the code to call
the methods of the interface via SOAP

WebSphere software

Interim Result

lll

* Results
> Interfaces for each WSDL
> Separate proxies for each interface

= \What we want

> One single java object that exposed all implemented interfaces via java
typecasts

> Make sure that the different factors use one single session

WebSphere software

= Handcraft your dynamic proxy

> Extend or g. apache. axi s. client. Servi ce to manage a shared call
object

> Implementj ava. | ang. refl ect. | nvocati onHandl er to serve
java‘s dynamic proxy

public class Test Proxy extends Service
| npl ements | nvocati onHandl er {

WebSphere software

lll

= Handle a common call object for all factors (so there will only be
one session)

/|l reuse the call object for all proxies
private Call call;

/1l override from Service
public javax.xm .rpc.Call createCall () throws Servi ceException

{
[l lazy initialization
i f (call==null)
call = (Call)super.createCall();

/'l reuse the call object
call . renoveAl | Paraneters();

cal | . set Mai nt ai nSessi on(true);
return call;

WebSphere software ?

lll

= Provide some logic to dispatch incoming calls to the proxies

/1l map the interface nethods agai nst inplenentation cl asses
Map net hodMap = new HashMap() ;

/[* find out about the supported nethods of an interface and
map agai nst the inplenenting proxy
*/
private void fill Methods(d ass cl s, Obj ect handl er)
{
Met hod[] m = cl s. get Met hods() ;
for (int i=mlength-1; i>=0; --1)
nmet hodMap. put (nfi], handl er);
}

/1l sinply dispatch an i ncom ng net hod cal |
public Cbject invoke((Qhject arg0, Method argl, Cbject[] arg2?)
t hrows Thr owabl e

{
return argl.i nvoke(nmet hodMap. get (argl), arg2);

} WebSphere software

lll

Initialize our handler with all supported factors and the respective

proxies. In the real world this information would be discovered at
runtime from the metadata or UDDI

| faces =

d ass|] new O ass[2];

private TestProxy(URL url) throws Servi ceException,
{

[/ some refl ection

fillMethods(Additive.class,

new Addi ti veSoapBi ndi ngSt ub(url ,this));
fill Methods(Substractive. cl ass,

new Substracti veSoapBi ndi ngSt ub(url,this));
/] supported interface

| faces[0] = Additive. cl ass;

| faces[1] = Substractive. cl ass;

Axi sFaul t

}

WebSphere software

private Cass[] getinterfaces() {return ifaces;}

lll

» [nstantiate the proxy

/] create the proxy object

static public Oobject createProxy(URL url) throws
Servi ceExcepti on,
Axi sFaul t
{
/1 the handl er
Test Proxy proxy = new Test Proxy(url);
/] create the java proxy
return Proxy.newProxyl nstance(
proxy. get d ass(). get d assLoader (),
proxy. getlnterfaces(),
pr oxy
);

WebSphere software ?z‘-i =

lll

= Use the proxy

> Once Initialized the resulting meta-proxy can be typecast to all implemented
java interfaces

> Calls to the meta-proxy will automatically be dispatched to the
implementation proxy

> There will only be one single session

Chj ect o

Test Proxy. creat eProxy(new URL(,http:..."));

Additive a = (Additive)o;
Int plus = a.add(1, 2);

Substractive s = (Substractive)o; // or (Substractive)a
int mnus = s.sub(1, 2);

WebSphere software

