
How to create proxies for WSRP
(08/27/2002)
Carsten Leue



Producer

§ One WSRP service may implement one or more different 
interfaces

§ Each interface is defined by an interface WSDL
§ Each binding is defined by a binding WSDL that imports the 

interface WSDL

Binding2
(DIME)

Binding1
(HTTP)

Binding3
(HTTP)

Interface1
(WSRP base)

Interface2
(WSRP properties)

service



Discovery

§ For each service a consumer can discover all exposed bindings 
and all exposed interfaces
Ø Via UDDI as tModelInstanceInfos
Ø Via self-description of the service

§ The consumer needs to filter all compatible interfaces and bindings 
to connect to the producer

§ How can the consumer find out if a binding or interface is the 
expected one?
Ø By analyzing the WSDL -> tedious and error prone
Ø The WSDL files can be named uniquely so interface and binding can be 

defered from the name (next slide)



Naming

§ Define a name that contains the protocol, binding and interface
§ WSRP.<interface>.<binding>
§ The publisher of the WSDL MUST ensure that the content of the 

WSDL matches the name
§ Naming should include a version number

Binding2
(DIME)

Binding1
(SOAP)

Binding3
(SOAP)

Interface1
(WSRP base)

Interface2
(WSRP properties)

service

WSRP.base.soap

WSRP.base.dime

WSRP.base

WSRP.propertiesWSRP.properties.soap



How a consumer can attach using precompiled proxies

§ The consumer finds out about all bindings and interfaces the 
service exposes

§ The consumer filters this set by supported interfaces. Per definition 
the producer must at least expose the WSRP.base interface

§ The consumer filters the resulting set by supported bindings. Per 
definitions all producers must expose SOAP binding, so the 
resulting list will contain at least one binding for each interface

§ The consumer sorts the list of bindings per interface by prefered 
bindings (e.g. DIME > SOAP-Attachments > SOAP)

§ For each interface the consumer selects the best binding



How a consumer can attach using precompiled proxies

§ The consumer instantiates a precompiled WSRP-proxy for each 
binding/interface and points it to the correct access point

§ In the JAVA case the consumer now instantiates a 
java.lang.ref.proxy object and makes it expose all discovered and 
supported interfaces

§ The consumer delegates each method invokation to the 
appropriate WSRP-proxy (e.g. by managing a map between 
method object and WSRP-proxy)



Object Model

wsrp.base

wsrp.properties

wsrp.base
via SOAP

Dynamic proxy

wsrp.base
via DIME

wsrp.properties
via SOAP

wsrp.properties
via DIME

wsrp.base

wsrp.base

wsrp.properties

wsrp.properties

Precompiled proxies

service

Binding2
(DIME)

Binding1
(SOAP)

Binding3
(SOAP)

WSRP.base.soap

WSRP.base.dime

WSRP.properties.soap

consumer producer



Implementation Hints

§ How to implement support for multiple WSDL factors using AXIS?
Ø No hacking
Ø Keep session across factors

§ Example
Ø Assume that the service exposes the two factors Additive and Substractive 

as defined below

interface Additive {
public int add(int a,int b);

}

interface Substractive {
public int sub(int a,int b);

}



Step1

§ Compile the JAVA interfaces
§ Generate WSDL from JAVA interface

Ø java org.apache.axis.wsdl.Java2WSDL -w Interface -o 
Additive.wsdl com.wsrp.Additive

Ø java org.apache.axis.wsdl.Java2WSDL -w Interface -o 
Substractive.wsdl com.wsrp.Substractive

§ Result
Ø two interface WSDLs (Additive.wsdl and Substractive.wsdl)



Step2

§ Generate Proxies (Javaspeak = Stubs) for each WSDL factor
Ø java org.apache.axis.wsdl.WSDL2Java -v -o .\

Additive.wsdl
Ø java org.apache.axis.wsdl.WSDL2Java -v -o .\

Substractive.wsdl

§ Result
Ø two helper files for each interface WSDL

– Additive.java that defines the JAVA interface
– AdditiveSoapBindingStub.java that defines the code to call 

the methods of the interface via SOAP



Interim Result

§ Results
Ø Interfaces for each WSDL
Ø Separate proxies for each interface

§ What we want
Ø One single java object that exposed all implemented interfaces via java 

typecasts
Ø Make sure that the different factors use one single session



Step3.1

§ Handcraft your dynamic proxy
Ø Extend org.apache.axis.client.Service to manage a shared call 

object
Ø Implement java.lang.reflect.InvocationHandler to serve 

java‘s dynamic proxy

public class TestProxy extends Service 
implements InvocationHandler {



Step3.2

§ Handle a common call object for all factors (so there will only be 
one session)

// reuse the call object for all proxies
private Call call;

// override from Service
public javax.xml.rpc.Call createCall() throws ServiceException
{
// lazy initialization
if (call==null)

call = (Call)super.createCall();
// reuse the call object
call.removeAllParameters();
call.setMaintainSession(true);
return call;

}



Step3.3

§ Provide some logic to dispatch incoming calls to the proxies
// map the interface methods against implementation classes
Map methodMap = new HashMap();

/* find out about the supported methods of an interface and
map against the implementing proxy

*/
private void fillMethods(Class cls,Object handler) 
{

Method[] m = cls.getMethods();
for (int i=m.length-1; i>=0; --i)
methodMap.put(m[i],handler);

}

// simply dispatch an incoming method call
public Object invoke(Object arg0, Method arg1, Object[] arg2)
throws Throwable
{

return arg1.invoke(methodMap.get(arg1),arg2);
}



Step3.4

§ Initialize our handler with all supported factors and the respective 
proxies. In the real world this information would be discovered at 
runtime from the metadata or UDDI

Class[] ifaces = new Class[2];

private TestProxy(URL url) throws ServiceException, AxisFault
{

// some reflection
fillMethods(Additive.class,

new AdditiveSoapBindingStub(url,this));
fillMethods(Substractive.class,

new SubstractiveSoapBindingStub(url,this));

// supported interface
ifaces[0] = Additive.class;
ifaces[1] = Substractive.class;

}
private Class[] getInterfaces() {return ifaces;}



Step3.5

§ Instantiate the proxy

// create the proxy object
static public Object createProxy(URL url) throws 
ServiceException,

AxisFault
{

// the handler
TestProxy proxy = new TestProxy(url);
// create the java proxy
return Proxy.newProxyInstance(

proxy.getClass().getClassLoader(),
proxy.getInterfaces(),
proxy

);
}



Step4

§ Use the proxy
Ø Once initialized the resulting meta-proxy can be typecast to all implemented 

java interfaces
Ø Calls to the meta-proxy will automatically be dispatched to the 

implementation proxy
Ø There will only be one single session

Object o = TestProxy.createProxy(new URL(„http:...“));

Additive a = (Additive)o;
int plus = a.add(1,2);

Substractive s = (Substractive)o; // or (Substractive)a
int minus = s.sub(1,2);


