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Producer

§ One WSRP service may implement one or more different 
interfaces

§ Each interface is defined by an interface WSDL
§ Each binding is defined by a binding WSDL that imports the 

interface WSDL
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Discovery

§ For each service a consumer can discover all exposed bindings 
and all exposed interfaces
Ø Via UDDI as tModelInstanceInfos
Ø Via self-description of the service

§ The consumer needs to filter all compatible interfaces and bindings 
to connect to the producer

§ How can the consumer find out if a binding or interface is the 
expected one?
Ø By analyzing the WSDL -> tedious and error prone
Ø The WSDL files can be named uniquely so interface and binding can be 

defered from the name (next slide)



Naming

§ Define a name that contains the protocol, binding and interface
§ WSRP.<interface>.<binding>
§ The publisher of the WSDL MUST ensure that the content of the 

WSDL matches the name
§ Naming should include a version number
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How a consumer can attach using precompiled proxies

§ The consumer finds out about all bindings and interfaces the 
service exposes

§ The consumer filters this set by supported interfaces. Per definition 
the producer must at least expose the WSRP.base interface

§ The consumer filters the resulting set by supported bindings. Per 
definitions all producers must expose SOAP binding, so the 
resulting list will contain at least one binding for each interface

§ The consumer sorts the list of bindings per interface by prefered 
bindings (e.g. DIME > SOAP-Attachments > SOAP)

§ For each interface the consumer selects the best binding



How a consumer can attach using precompiled proxies

§ The consumer instantiates a precompiled WSRP-proxy for each 
binding/interface and points it to the correct access point

§ In the JAVA case the consumer now instantiates a 
java.lang.ref.proxy object and makes it expose all discovered and 
supported interfaces

§ The consumer delegates each method invokation to the 
appropriate WSRP-proxy (e.g. by managing a map between 
method object and WSRP-proxy)



Object Model
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Implementation Hints

§ How to implement support for multiple WSDL factors using AXIS?
Ø No hacking
Ø Keep session across factors

§ Example
Ø Assume that the service exposes the two factors Additive and Substractive 

as defined below

interface Additive {
public int add(int a,int b);

}

interface Substractive {
public int sub(int a,int b);

}



Step1

§ Compile the JAVA interfaces
§ Generate WSDL from JAVA interface

Ø java org.apache.axis.wsdl.Java2WSDL -w Interface -o 
Additive.wsdl com.wsrp.Additive

Ø java org.apache.axis.wsdl.Java2WSDL -w Interface -o 
Substractive.wsdl com.wsrp.Substractive

§ Result
Ø two interface WSDLs (Additive.wsdl and Substractive.wsdl)



Step2

§ Generate Proxies (Javaspeak = Stubs) for each WSDL factor
Ø java org.apache.axis.wsdl.WSDL2Java -v -o .\

Additive.wsdl
Ø java org.apache.axis.wsdl.WSDL2Java -v -o .\

Substractive.wsdl

§ Result
Ø two helper files for each interface WSDL

– Additive.java that defines the JAVA interface
– AdditiveSoapBindingStub.java that defines the code to call 

the methods of the interface via SOAP



Interim Result

§ Results
Ø Interfaces for each WSDL
Ø Separate proxies for each interface

§ What we want
Ø One single java object that exposed all implemented interfaces via java 

typecasts
Ø Make sure that the different factors use one single session



Step3.1

§ Handcraft your dynamic proxy
Ø Extend org.apache.axis.client.Service to manage a shared call 

object
Ø Implement java.lang.reflect.InvocationHandler to serve 

java‘s dynamic proxy

public class TestProxy extends Service 
implements InvocationHandler {



Step3.2

§ Handle a common call object for all factors (so there will only be 
one session)

// reuse the call object for all proxies
private Call call;

// override from Service
public javax.xml.rpc.Call createCall() throws ServiceException
{
// lazy initialization
if (call==null)

call = (Call)super.createCall();
// reuse the call object
call.removeAllParameters();
call.setMaintainSession(true);
return call;

}



Step3.3

§ Provide some logic to dispatch incoming calls to the proxies
// map the interface methods against implementation classes
Map methodMap = new HashMap();

/* find out about the supported methods of an interface and
map against the implementing proxy

*/
private void fillMethods(Class cls,Object handler) 
{

Method[] m = cls.getMethods();
for (int i=m.length-1; i>=0; --i)
methodMap.put(m[i],handler);

}

// simply dispatch an incoming method call
public Object invoke(Object arg0, Method arg1, Object[] arg2)
throws Throwable
{

return arg1.invoke(methodMap.get(arg1),arg2);
}



Step3.4

§ Initialize our handler with all supported factors and the respective 
proxies. In the real world this information would be discovered at 
runtime from the metadata or UDDI

Class[] ifaces = new Class[2];

private TestProxy(URL url) throws ServiceException, AxisFault
{

// some reflection
fillMethods(Additive.class,

new AdditiveSoapBindingStub(url,this));
fillMethods(Substractive.class,

new SubstractiveSoapBindingStub(url,this));

// supported interface
ifaces[0] = Additive.class;
ifaces[1] = Substractive.class;

}
private Class[] getInterfaces() {return ifaces;}



Step3.5

§ Instantiate the proxy

// create the proxy object
static public Object createProxy(URL url) throws 
ServiceException,

AxisFault
{

// the handler
TestProxy proxy = new TestProxy(url);
// create the java proxy
return Proxy.newProxyInstance(

proxy.getClass().getClassLoader(),
proxy.getInterfaces(),
proxy

);
}



Step4

§ Use the proxy
Ø Once initialized the resulting meta-proxy can be typecast to all implemented 

java interfaces
Ø Calls to the meta-proxy will automatically be dispatched to the 

implementation proxy
Ø There will only be one single session

Object o = TestProxy.createProxy(new URL(„http:...“));

Additive a = (Additive)o;
int plus = a.add(1,2);

Substractive s = (Substractive)o; // or (Substractive)a
int minus = s.sub(1,2);


