
[image: image1.png]OASIS)

WSRP-Security Technical Note

Version

Created

09/16/05

Document Identifier

Editors

Richard Jacob, IBM (richard.jacob@de.ibm.com)

Contributors

Status

1 Overview of Security Standards

· XML Digital Signature Syntax and Processing: W3C Recommendation, 12 February 2002

· XML Encryption Syntax and Processing: W3C Recommendation, 10 December 2002

· XML Key Management Specification: W3C Proposed Recommendation, 2 May 2005

· Security Assertion Markup Language 2.0 : OASIS standard, 15 March 2005

· eXtensible Access Control Language 2.0: OASIS standard, 1 February 2005

· WS-Security: OASIS Standard 1.0, 6th April 2004

· WS-Policy: Framework Publication updated to 1.1 , 28 May 2003

· WS-Policy Attachment updated to 1.1 , 28 May 2003

· WS-Policy Assertions Language updated to 1.1 , 28 May 2003

· WS-SecurityPolicy, Draft 18 December 2002

· WS-Trust, Updated February 2005

· WS-SecureConversation, Updated February 2005

· WS-Federation: Published on 8 July 2003

· WS-Federation: ActiveRequestor Profile, published on 8 July 2003

2 Common Vocabulary

The following phrases are commonly used when discussing security related topics. The definitions are provided in the interest of promoting common understanding among readers.

Message integrity: security mechanisms applied to a message to ensure that the message is not modified in transit

Message confidentiality: security mechanisms applied to a message to ensure that only the intended recipient (who possesses the corresponding key material) is able to read the message.

Identification: The assertion of a claimed identity.

Authentication: A protocol that challenges a claimed identity for proof.

Authorization: A security mechanism that ensures that access to resources & actions is controlled.

Auditing: Collection of data related to an event.

Non-Repudiation: The ability to present evidence that cannot be disputed regarding the participants in an event.

Federated identity: The ability of organizations to recognize and authorized identities outside an organizational boundary. Needs to be governed by appropriate trust relationships. Allow organizations to identify and validate users from partner organizations and provide them with seamless access to their service within that trusted federation without requiring re-authentication with a password.

Trust: A feeling of certainty (sometimes based on inconclusive evidence) either (a) that the system will not fail or (b) that the system meets its specifications (i.e., the system does what it claims to do and does not perform unwanted functions)
.

Key integrity: Protecting keys from modification.

Privacy: Protecting user information from unauthorized access. .

Availability: All messaging systems are subject to a variety of availability attacks. Replay is a common attack. Other attacks, such as network-level denial of service attacks are harder to avoid.

Replay: Messages may be legitimately replayed for a variety of reasons. An approach that takes this into account is important for the detection and elimination of message replay attacks.

3 Introduction to WSRP Security Issues

In simple use cases, there is often a perception that security is not needed or it can be supplied by some existing mechanism (i.e. SSL. VPN’s). As the sophistication of the scenarios for WSRP increases some of the issues that are currently surfacing for WSRP include the following (in Priority order):

1. Authenticating the Consumer

2. Supplying an authenticated End User identity to the Producer

a. When Producer and Consumer are in the same security domain.

b. When Producer and Consumer are in separate security domains.

3. Asserting a role assignment for an End User by the Consumer

4. Message Integrity

5. Message Confidentiality

6. Discovering security capabilities and requirements

7. Communicating privacy
requirements between Producer and Consumer (e.g. User Profile)

8. Non-repudiation of messages

9. Establishing a reusable security context

a. for multiple messages

b. for multiple parties

This technical note does not try to define a new security technology, rather it describes and give guidance how existing technologies can be used to solve the WSRP use cases. When applicable we will refer to the WS-I Basic Security Profile, SAML interoperability scenarios, etc.

4 WSRP Security Scenarios

4.1 Consumer Identification and Authentication / Peer Authentication

4.1.1 Scenario Description

This scenario is not different to standard scenarios concerning communication between peer entities, e.g. browser and Web server or two SOAP nodes. See [WS-I-SecChall], section 3.1.

Producer needs to identify and authenticate the Consumer in order to decide whether or not to serve request from this Consumer. Examples are Portals of one particular company communicating over the Internet where Producer Portals reject to serve Consumers other than the known ones. Other example is where the Producer wants to decide whether the Consumer is eligible to use a certain registration context and its associated portlets.

In turn the Consumer requires the Producer to identify and authenticate itself to decide whether it communicates with the intended party.

4.1.2 Candidate Technologies

1. HTTPS with X.509 certificates

2. HTTP(S) with basic auth or digest

3. OASIS SOAP message level security

We will refer to 1. and 2. as transport level security.

4.1.3 Using Transport Level Security

Using transport level security for (mutual) identification authentication is described in [WS-I-SecChall], Sections 5.1.3 – 5.1.6.

Note that configuration and communication of the security requirements and policies in general requires out-of-band mechanisms and is out of scope of the WSRP protocol. Rather it requires an appropriate configuration of the HTTP sender and receiver nodes.

4.1.4 Using SOAP Message Level Security

Questions up front:

1. Do we need integrity of the SOAP message or do we want to expect TLS to protect the message? [Subbu: Since there is no guarantee that TLS is adhered to between various http proxies/intermediaries, some producers may rely on message level security instead.]
If yes, security tokens need to be signed to attach them to the message and protect against replay attacks. Else we can assume TLS to protect the message and Consumer Identity assertion.
Also refer to later chapter/scenario describing message integrity (this relates but is different to signing the security token).

2. Do we expect intermediaries in this scenario? [Subbu: I think yes. There may be intermediaries monitoring SLAs.]
If no protecting using SSL should suffice.

3. Do we need confidentiality at the SOAP level?
Refer to later chapter/scenario describing message confidentiality.

Refer to description of [WS-I-SecChall] section 5.2ff.

In general authenticating the Consumer means to:

· Add a security token to the SOAP message identifying the Consumer. Security tokens can be (defined by the WS-Security token profiles):

· Username token (see [WS-I-SecChall], section 5.2.5.1 and token profile)
Could be either plain common identifier or a shared secret can be added. Requires integrity/confidentiality to fully protect the claim.

· X.509 Certifikate (see [WS-I-SecChall], section 5.2.5.2 and token profile)

· Kerberos Ticket (see [WS-I-SecChall], section 5.2.5.2 and token profile)

· SAML token (see [WS-I-SecChall], section 5.2.5.2 and token profile)

· REL token (see [WS-I-SecChall], section 5.2.5.2 and token profile)

· Sign the security token to provide confirmation of the token claims
I guess this can be left out if we use TLS in combination

How to deal with mutual authentication? Dsigs would provide a means here.
The configuration of the mechanism is out-of-band.

4.1.5 Using Combined Methods

Combination of TLS and SOAP message level security are described in [WS-I-SecChall], section 5.3.

In general the following approach can be used:

· Protect messages using SSL (confidentiality and integrity)

· Send identification/authentication claim in the SOAP message via a security token.

4.2 End-User Identification and Authentication

4.2.1 Scenario Description

The Producers requires the Consumers it is serving to provide the authenticated user's identity in order to being able to provide appropriate service to the end-user. This identity may not only be used to make authorization decisions but also be forwarded to other parties like backend systems. In this scenario the Consumer claims an identity of the user on whose behalf the Consumer is acting. It is left open how the Consumer obtained the user’s identity and how it authenticated the user. Essantial for an user identity assertion is the establishment of trust between the asserting party (Consumer) and the party establish the security context based on this assertion (Producer).
In general there are many possible scenarios describing what the user identity is and where it comes from including:

· Consumer/Producer share the same user database, i.e. the user's identification is known to both parties.
Example here is an Intranet scenario with common LDAP directory storing the users.

· The Consumer provides the authenticated user id known by the Producer only. Here, there is no common user identity/security domain. The Consumer only keeps the authentication data on behalf on its users, i.e. it acts as a password/certificate store, and manages the sign-ons with the various Producers.

· Consumer provides a user's identity, the Producer uses this identity to map to an identity in its own security domain.
Example: User uses Producer's Portlet, Consumer provides user's identity to Producer, Producer presents sign-in page on first visit, and later on maps the Consumer provided identity to the new signed-up identity.

Question: is this relevant to this tech note? Is the whole federation definition up to us or would we prefer only to describe how the identity is being transferred? [I agree. We could mention these as some possibilities, but the tech note’s role is to guide what is getting transferred over the message.]
4.2.2 Candidate Technologies

· WS-Security tokens

· Username Token

· SAML

· WS-Security

· Optoinally accompanied by TLS/SSL

4.2.3 Using WS-Security Tokens

The user’s authenticated ID is provided by the Consumer using a security token like the Username(/Password) token.

The distinction if the Username only suffices is dependant on the scenario/security domain setup.

In case of common userDB and Producer doing the mapping a plain username token should suffice. Probably a SAML assertion would fall into the same camp. [Right. Most security admins feel jittery when they see credentials such as passwords sent over the wire, even when encrypted.]
In case of Consumer providing the login to the Producer a Username/Password would be required. [I don’t follow. Could you elaborate? Who is providing the login, for whom?] [RJ: I refered to the second scenario above where the Conusmer acst as an credential store and provide userid/password with the request]Presumably a Kerberos Ticket or even a X.509 certificate would fall into this camp.

Questions:

· If we use TLS and SSL for mutual authentication of the Consumer and Producer we would have:

· Authentication of sender/asserter(Consumer) and message receiver(Producer)

· Message Integrity and Confidentiality

· No need to sign the security tokens in the message [Can we say this for sure? It is really up to the deployment. If there is an intermediary, I would rather have the SOAP message describe the security and not rely on SSL/TLS.][RJ: well, but this is the light weight scenario]
·  seems to be a good light weight scenario in the first place, probably sufficient for the use cases we really want to solve. i.e. no intermediaries between Consumer and Producer [Strictly speaking, transport level security is something that happens underneath the SOAP layer. So, it is best to not couple these, IMO.]
· If we don’t use TLS and SSL

· Is the plain sending of the security token sufficient, e.g. in Intranet scenarios?
In this case the identity propagation is not fully secured…[Nate: This assumes the producer is protected from all other consumers]
· The claim could be protected by Consumer signing the token --> proof of issuance [also consider encrypted tokens, and token expiry intervals – not sure which parts of these specs talk about token expiry, but it is good to mention.][RJ: yes, correct will add nonces and timestamps into the discussion.
· We could use SOAP message level security to protect the message [should we mention mustUnderstand attribute on the SOAP header carrying security token?]
· If we used SOAP message level security for authenticating the Consumer also

· How could the Producer distinguish between the Consumer ID token and the End-User ID token? [Didn’t start a thread on this with the ws-security folks?]
Is Signing of the End-User token sufficient to build up the authentication chain? [I guess so. Before a Producer can verify a security token’s signature, it needs to trust the Consumer’s public key. It could reject a signature when it is signed by some untrusted party.] I.e. first identify Consumer by being able to verify the signed end-user token, then use signed end-user token for user authentication?
Our Proposed WS-Security TokenUsageProfile didn’t make it into the WS-Security TC since it is winding down 1.1. Further efforts here? Add it to WS-I?

[Since we are using message level security tokens for end user authentication in web applications, there are a few cases worth discussing:
a. In most web apps, authentication is tied to a user’s session. Given this, should the consumer be allowed to send the security token once, or should it send on every request to the producer on behalf of an end user?

b. What should a Producer do when it wants to reject a token either because the token is not valid, or because the content’s of the token could not be used to authenticate the user? If the producer has some content available for non-authenticated users, it is possible to argue that the Producer can treat the user as unauthenticated and continue to serve the request.
I don’t know the answers, but it is worth discussing these.]
4.3 End-User Role Assertion

4.3.1 Scenario Description

Producer makes its authentication decisions based on various claims (like user roles). It requires the Consumer to provide such claims/assertions. Example is here a Consumer Portal where users log in; the Consumer Portal assigns roles to the users and passes the role information to the Producer. The Producer trusts the Consumer and the claimed role and acts accordingly, e.g. allows switching to edit mode, shows admin markup etc.

4.3.2 Candidate Technologies

SAML

4.3.3 Using SAML

Basically this would mean to:

· Add a SAML assertion to the SOAP message as a security token.

· SAML assertion contains attribute describing the user

· E.g. UserRole: Admin, PowerUser, WhatNot

· We would need to define these attributes (not the values)

Questions:

Who is doing the mapping?

· Consumer: how does it get the Producer roles to know

· Producer: how does it get the Consumer roles to know

· I guess this should be out-of-band. [I agree]
4.4 Message Integrity

We can describe the usage of TLS/SSL here and also refer to SOAP Message Level Integrity in the [WS-I-SecChall] document. I guess this should suffice.

Do we want to spec some signature algorithms? How about digest?

RSA

DSA

MD5

SHA-1

SHA-256

Others
4.5 Message Confidentiality

We can describe the usage of TLS/SSL here and also refer to SOAP Message Level Integrity in the [WS-I-SecChall] document. I guess this should suffice.

Do we want to spec algorithms, key exchanges?

3DES

AEGS

PGP

Others
5 Proposed Security Profiles
This section proposes security profiles dealing with End User Assertion and trust establishment. It is not intended to be the final text but is rather kept briefly and open for discussion. Further techniques to protect the claims and/or messages are commented where necessary.
5.1 Profile 1: Username Token and Transport Level Security
Trust establishment:
· Trust is based upon standard transport level security means
· Trust is established using SSL client certificates
· Consumer sends X.509 certificate to establish the communication channel

· Producer verifies certificate, if accepted, channels is established and SOAP message is processed, otherwise the channel establishment is rejected
End User Identity Assertion:
· WS-Security 1.0 UsernameToken is used to transfer the asserted identity (no PW)

· Producer picks up the UsernameToken value and establishes a security context (trust established at lower transport level)
Comments/Alternatives
· Do we need to add additional protection against replay attacks using NONCE and CREATION TIME? SSL brings us this protection already but only point to point. If NONCE and CREATION TIME are send in clear or not being signed they are worthless. So I think we should omit them in this profile.
· Can we state that only TLS is used for the trust establishments and leave this open?
· Is using HTTP basic auth over SSL an alternative (no need for PKI)?
· How to communicate the TLS setup?

· Is having “sub-profiles” a feasible way?
· Is having TLS setup per end point practical?
· WS stack hide the transport details from the app level
· This seems to enforce the app control the WS stack config at runtime
Pros:
· Easy way to assert an identity

· No need to use XML encryption / integrity

· For confidentiality and integrity standard SSL accelerator HW can be used, fits well with existing infrastructure known from the Web.
· Better performance vs. WS / XML level encryption/dsig
· Mutual authentication for “free”
· HTTP communication can be set up to verify server certificate against trust store
Cons:
· End-To-End Security only
· Proxies and reverse proxies might be in the chain

· Proxies need to forward the client certificate or a “trust chain” has to be established
· Need PKI to be established
· Common today anyway, but often considered cumbersome
· Tie of TLS and WS-Security in one profile

· Identity assertion is relying on TLS, but typically the WS stack has no knowledge if that really happened. Is this a problem?
· Typically setting up TLS and WS-Security are different config tasks
· Tie to SSL communication all the time  performance hit?
· Hard for the producer to assert the user's identity without opening other security holes

· No additional information provided to the producer to create user's on the fly.
5.2 Profile 2: Username Token & Username/Password Token
Trust establishment:

· Trust is based on a WS-Security 1.0 Username/Password token
· Consumer sends Username/Password token as the Consumer authentication
· Shared secret between Consumer and Producer

· Producer verifies provided user name and credential

· If successful proceeds with identity assertion token
· If not successful rejects message
End User Identity Assertion:

· WS-Security 1.0 UsernameToken is used to transfer the asserted identity (no PW)

· Producer picks up the UsernameToken value and establishes a security context based on this token
Comments/Alternatives
· The token can be simply identified/distinguished in this scenario:

· The trust token contains a PW

· The ID assertion contains no PW
· Since tokens are transferred in clear, using transport level security is strongly adviced (or even required)
· This provides the exact same functionality as basic auth.
Pros:
· Simple means to establish trust and id assertion

· No PKI required
· No need to use XML encryption / dsig
· Exisisting TLS infrastructure can be used to protect the transport channel, works well with existing infrastructure
· HW accelerators
· Proxies / Reverse Proxies
· Producer authentication (and thus mutual authentication) for free when SSL ist being used
· Client HTTP configuration can verify server certificate
Cons:
· Ties TLS and Message Level Security
· Typically setting up TLS and WS-Security are different config tasks
· Is this really a bad thing?

· Can a “trusted environment” be used without TLS?
· Transparent to the WS stack establishing trust and security context, so seems mainly to be an administrative choice
· Tie to SSL communication all the time  performance hit?
5.3 Profile 3: Signed Username Token
Trust establishment:
· Trust in the token issuer (Consumer) is established using WS-Security 1.0 Digital Signatures
· Consumer signes the assertion token

· Producer verifies the digital signature

· If successful, proceeds with the establishment of the security context base on the assertion token
· If no successful rejects message
End User Identity Assertion:
· WS-Security 1.0 UsernameToken is used to transfer the asserted identity (no PW)

· Producer picks up the UsernameToken value and establishes a security context based on this value
· Since the messages are sent in clear we need to protect against replay attacks, this NONCE and CREATION TIME are added to the token according to the WSS usernametoken profile 1.0.
Comments/Alternatives:
· Can be combined easily with existing TLS techniques

· to include confidentiality
· to get Producer authentication
· If we just stayed with SSL without client certs there should be no need to address TLS issues in this profile, it would be an administrative choice, profile agnostic of TLS
· No PWs transferred at all
Pros:
· End-To-End security

· No need to rely on TLS

· TLS can augment the profile to add additional security
· Can be established/used by only administering the WS stack

· No need to fiddle around with both TLS and WS stack setup
· Signing Security tokens defined by WS-I Basic Security Profile

· Expect most WS stacks to finally implement it.
· No need to communicate over SSL if additional security is not required
· Performance gain?
Cons:
· Requires PKI setup
· Using XML dsig can be a performance hit?

· Eventually can be outsourced to crypto HW like for SSL

· Small portion to sign

· Just the token, including asserted ID + NONCE + CREATION TIME
· Profile doesn’t provide explicit means for Producer authentication

· Could be solved by
· Using TLS
· Signing the reply
· Signing a “dummy token” in the reply
5.4 Profile 2: Username Token & Username/Password (Digest)

Trust establishment:

· Trust is based on a WS-Security 1.0 Username/Password token

· Consumer sends Username/Digested Password token as the Consumer authentication

· Shared secret between Consumer and Producer

· Producer verifies provided user name and credential

· If successful proceeds with identity assertion token

· If not successful rejects message

End User Identity Assertion:

· WS-Security 1.0 UsernameToken is used to transfer the asserted identity (PW digested)

· Producer picks up the UsernameToken value and establishes a security context based on this token

Comments/Alternatives

· The token can be simply identified/distinguished in this scenario:

· The trust token contains a PW

· The ID assertion contains no PW

· Since tokens are NOT transferred in clear, using transport level security is not required

· Trust is based on the user not the consumer

· Requires NONCE and CREATIONTIME to avoid replay

Pros:

· Simple means to establish id assertion

· No PKI required

· No need to use XML encryption / dsig

· Replay attacks may be detected

· No clear text (or even reversible) passwords sent over the wire

Cons:

· The consumer and producer need to be able to generate the same digest. This may require reversible passwords.

· Requires the producer to store NONCE and CREATIONTIME to detect replay

5.5 SAML Unsigned

See comments below

5.6 SAML Signed

See comments below

5.7 More Profiles to discuss
5.7.1 Encrypting the security token vs. signing the token
What does this buy us?
In case of asymmetric encryption how is trust enabled? I presume it would require the two token approach described in 5.2.
In case of symmetric encryption, how is trust enabled? The knowledge of the shared secret (message need pointer to it) seems to suffice.
5.7.2 Using SAML assertions
In general SAML assertion could be used in all the profiles described in 5.1-5.3 as a replacement for the UsernameToken. The rest should remain the same.

What would the exchange to a SAML assertion buy us for the use case?
1. Identifies the Consumer (UNT only identifies the user)

2. Allows artifacts (SecureID) to be sent as well as the password

3. Allows Holder of Key (per user) trust establishment

4. Allows in token signature (maybe slightly smaller than token+dsig)

5. Can provide additional user attributes (allow on the fly user creation)

6. Allows the consumer to specify where tokens may be sent

7. Allows the producer to specify where tokens may be received from (Without TLS/SSL)
· If the SAML assertion is providing only the end user id assertion, it doesn’t seem to pay off

· Contains the same information as the UsernameToken

· Is more complicated

· Is not part of the WS-I Basic Securtiy Profile yet

· However the SAML assertion could potentially be used to
· Additionally assert security roles

· If the userid is passed anyway and is has to be known by the Producer (otherwise no security context could be established), aren’t the roles picked up from the user’s security context? Or are we trying to modify the security roles
· Assert just security roles
· This seems to make sense
Would somebody interested in SAML assertion pick up this task a profle, i.e. work through the SAML issues?
5.8 Propagating the usage/requirement of security profiles

This section deals with questions how the Producer can communicate its security requirements to the Consumer. Since WS-Policy is not there yet we took this profile approach, so the question is, how are the profiles communicated?
5.8.1 Using well known WSRP extensions
· Define a meta-data extension with holds pointers to required security profiles

· Basically a Qname to profile
· array of strings/qnames

· array entries are logically “or’ed”
· Extension is extending the Producer’s service description

· Consumer’s reading the extension can prepare themselves to use a setup adhering to the required security profiles
· Products can ship with pre-defined setups (reflecting the profiles)
· The WS runtime can switch to a predefined setup
· Admin task to associate Producer with a certain setup

· Per request change to a setup based on the Producer’s metadata
Simple alternative not being part of the official protocol. However ties WS stack config to our application level protocol.

Used with the understanding that at some point in time the WS-stack will provide a policy means.
5.8.2 Using WSDL extensions

One alternative to using WSRP extensions would be to define WSRP specific WSDL extensions which would reside in our namespace.
· Define a WSDL extension holding the similar meta-data as in 5.5.1
· WSDL extension attached to the WSDL port definition
· Consumers can read the WSDL and pick the port that matches their capabilities with the port requirements

· Alternatively extend the service element?

· Would be “for-all-ports” setup then.
This approach would tie the security profile requirements more to the lower WS stack level. WSRP would remain “clean” leave the configuration at the WS level.

Question is: how good is tooling processing WSDLs with custome extensions?
Policy Profiles are well known wsdl extensions
6 References

6.1 Normative

[WS-I-SecChall]
WS-I, Security Challenges, Threats and Countermeasures, Version 1.0: http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf

� RFC2828

�Glossary? Maybe at the end…..I would recommend actually referencing a glossary like the ITEF one…..rfc 2828 or WS_I material on Risks & Countermeasures

�You need to add this to your glossary if you’re going to use it here I believe.

30
wsrp-security-tn-0.1-draft02.doc

