1 Publish/Find/Bind

[working title]

A Producer MAY facilitate the discovery and binding of the portlets it hosts by a potential Consumer, using common discovery mechanisms such as UDDI and ebXML.
A Producer MAY facilitate the discovery of its WSRP WSDL, as well as other information about itself, using common discovery mechanisms such as UDDI and ebXML.

This is an abstract model for publishing information about Producers and Portlets in general. Additional documentation in the form of technical notes will offer concrete guidelines for implementing the model in UDDI and ebXML (others?).

1.1 Producer publishing model

The goal of the Producer publishing model is to provide a baseline set of information that a Producer provides in published form in a registry, so as to permit potential Consumers to locate and bind to it using the registry implementation’s standard mechanisms for doing so.
If the Producer chooses to publish information about itself in a registry, its published information MUST, at a minimum, conform to this model.

1.1.1 Details to be published

1.1.1.1 Name
The Producer MUST supply a human-readable, NLS-enabled name to refer to itself in the published information.
1.1.1.2 Description
The Producer MAY supply a text description for itself and/or its services.
1.1.1.3 URI to Producer-specific WSDL.

The Producer MUST include in its published information a URI or other means for Consumers locate the WSDL that contains the WSRP interface and binding information specific to this Producer.

1.1.2 Categorization

Categorization is used to distinguish the Producer’s published information in the registry, and provides a means for the Consumer to narrow the scope of the registry query to exclude as many irrelevant or undesired “hits” as possible. To the extent the Producer makes use of categorization, this will help minimize the effort required of Consumers to locate the Producer’s published information in the registry.

1.1.2.1 Global Categorization
The Producer MUST associate with its published information a means to distinguish itself as a “WSRP Producer”, from the other published entities in the registry.
This categorization level is to be considered global, and the exact semantics and composition of this scheme is the responsibility of this technical committee.
It is a deliverable of this technical committee to draft and publish, as part of the WSRP 1.1 specification, an official global category scheme that is conformant with each of the registry implementations the specification addresses.
The technical notes for registry bindings will detail what registry-specific category scheme the Producer is to use to categorize itself, and how to do so.
1.1.2.2 Producer-specific categories

The Producer MAY choose to create its own categorization scheme, both for itself and for the portlet services it offers for WSRP Consumers.

If the Producer chooses to create such a scheme, it MUST do so in a means that is compliant with the specific registry implementation(s) it is using for publication.

The Producer SHOULD facilitate a potential Consumer’s utilization of its custom categorization schemes.
1.1.2.3 Other categories

The Producer MAY choose to use a category scheme that it did not itself create. A number of standardized schemes already exist, such as DUNS and Unicode, and bindings for these schemes, and others, have already been established for some of the registry implementations.
Alternative schemes are likely to emerge over time that are more specific to the publication of web services, particularly in terms of the “verticals” these services address (e.g., medical, financial, etc.).
1.1.3 Keywords [optional]
1.2 Portlet publishing model

1.2.1 Details to be published

· Producer offered handle

· Name (human friendly – optional, though strongly suggested)

· Description (optional)

· “Link” to Producer

1.2.2 Categorization

· “wsrp:portlet”

· Producer-specific categories

· Other categories

1.2.3 Keywords

1.3 Consumer discovery

1.3.1 Search for services from a specific Producer

Typical intranet scenario

Consumer needs only the Producer information, and uses getServiceDescription (after possibly registering) to get info for all portlets

1.3.2 Search for services across several Producers

1.3.2.1 Name of service

1.3.2.2 Category(ies) of service

1.3.2.3 Service keywords

1.4 Bindings to registry implementations

[This section is here for informational purposes only, and outlines the main registry binding issues that will be fully detailed in accompanying technical notes. The final draft of this specification section will omit detailed binding information for specific registry implementations.]

1.4.1 UDDI 2.0

· “wsrp:producer” and “wsrp:portlet” tModel specs in wsrp namespace, derive from “wsdlSpec”. (Per IBM proposal).

·
Producer published as both a businessEntity and a businessService.

· Portlets published as businessService entities linked to the Producer businessEntity.

1.4.1.1 BindingTemplate

Associated with a Producer will, at a minimum, contain the endpoint(s) for the required interfaces, ServiceDescription and Markup. As there will always be a URI to the Producer WSDL, additional access information can be found there for other interfaces, as well as for alternate bindings.UDDI 3.0

Same as 2.0, except ID’s can be human-readable instead of string UID’s.

Future WSRP version will address other 3.0 capabilities (i.e. permissions, notification).

1.4.2 ebXML

Research required.

�We should make this mandatory, because the name is what is used by all browsing engines. Without a mandatory name it is likely that portlet entities will not be considered by many registry users.

�You mean "link to the producer entry in this very registry"?

�As discussed at the F2F we should move 1.4 into three additional documents, each describing the concrete registry binding.

�Are these the needed “canonical” tModels that represent the normative WSDL portType and binding definitions for WSRP?

�UDDI 2.0 and 3.0 should be discussed together. In fact, UUID-based V2 keys can be programmatically derived from domain-based V3 keys.

