Web Services for Remote Portlets 1.0 Primer
Version 0.41

10/10/2003

[image: image1.png]OASIS

Web Services for Remote Portlets 1.0 Primer
Draft 0.41, 10 October 2003

Document identifier:

wsrp-primer-1.0 (Word)

Location:

http://www.oasis-open.org/committees/wsrp
Editors:

Subbu Allamaraju, BEA Systems <subbu@bea.com>

Rex Brooks, Starbourne Communications <rexb@starbourne.com>

Alan Kropp, Vignette Corporation <akropp@vignette.com>

Contributors:

Gil Tayar, WebCollage <Gil.Tayar@webcollage.com>
Abstract:

This is the WSRP 1.0 primer. The purpose of this document is to provide a detailed explication of the main concepts contained in the WSRP 1.0 specification. In that sense, this is a companion document to the specification. Although this primer is not normative, it’s tutorial approach is intended as a guide for implementers and other technical readers. This document explains the abstractions of the specification in a “real-world” perspective based on a step by step approach representing practical use case scenarios.

Status:

This version is a draft of the non-normative WSRP 1.0 primer. Comments about points needing clarification are much appreciated and may be emailed to Alan Kropp.

If you are on wsrp@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to wsrp-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to wsrp-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

[errata?]

Copyright © 2003 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

21
Introduction

21.1
Common remote content protocol

31.2
Promote rigorous portal/portlet implementations

31.3
Framework for sophisticated scenarios

31.4
Tie together common WS-related standards

32
Service Description Interface

43
Markup Interface

44
Registration Interface

45
Portlet Management Interface

46
Use Profiles

47
Basic Topics/Issues

47.1
Markup

47.2
Caching

47.3
Persistence

57.4
Statefulness

57.5
Modes/Window States

57.6
URL Rewriting

58
Advanced Topics/Issues

58.1
User Profile and personalization

58.2
Localization and Internationalization

58.3
Security

58.4
Extensions

58.5
Carrying custom modes

68.6
Multipart upload

1 Introduction

There are numerous sources of high-level introductory information about WSRP 1.0, including the introductory section of the specification itself, and the WSRP White Paper [link]. The first-time reader is encouraged to explore these resources, before proceeding with the extended examples and explanations contained here.

The guiding perspective on which this specification was built should be of primary interest to potential implementers. This perspective is framed by the question of what problems WSRP is intended to solve. The specification’s procedural approach to solving these questions can be divided into a few main areas:

1.1 Standard remote content protocol

A standard remote content protocol replaces many proprietary, product-specific solutions. This benefits all parties, Consumers (i.e. portals) and portlet developers alike.

1.2 Promote rigorous portlet implementations

WSRP raises the bar of conformance for this standard in many respects for what constitutes a “good or effective” portlet implementation. The specification makes specific recommendations regarding markup fragment rules, representing statefulness, ensuring security, etc., with an eye toward maximizing the usefulness and integrity of portlet services. This is not to suggest that WSRP mandates a “one size fits all” approach.

1.3 Framework for sophisticated scenarios

WSRP 1.0 is the foundation on which increasingly sophisticated implementations are to be specified. These include the ability for Consumers to customize a portlet’s content, and to create application process flows that coordinate the activities of multiple portlets, from multiple Producers.

1.4 Using common WS-related standards

The plethora of standards and technologies that have relevance to the web services world represents a daunting and growing challenge to implementers, in terms of what to select and how to design a solution. Many of these end up as one-off, proprietary solutions of limited scope, with a limited shelf life.

WSRP builds on a few fundamental standards, most notably XML and SOAP, while allowing for the implementation of evolving standards, to deliver a protocol rich in abstractions and operations that web service implementers and Consumers require.

2 Concepts

[TODO: Rex/Alan: I added this to keep track of some terms/topics that need some intro so that we can refer to these in the latter sections. Please feel free to suggest/make changes. Or we may reassess the need for this section as we get the complete shape of the primer clear.]

2.1 Producers and Consumers

The WSRP specification uses the terms Producer and Consumer to describe parties implementing the specification.

The Producer is a web service offering one or more portlets and implementing various WSRP interfaces/operations. Depending on the implementation, a producer may offer just one portlet, or may provide a runtime for deploying and managing several portlets.

The Consumer is a web service client that invokes producer offered WSRP operations and provides an environment for users to interact with portlets offered by one or producers.

TODO: Refer to use profiles section.

2.2 Producer Consumer Interaction

2.3 Modes and States

[Just refer to #6.8 in the spec? Do we need to talk about it in the primer.]

2.4 Markup Generation

3 Basic Scenario

[TODO: Some fictitious names for producer and consumer – suggestions?]

P Inc would like to host a web based portfolio management application. C Inc would like to provide its users access to the portfolio management application on its web site.

In order to offer this portfolio management application, C Inc and P Inc agree on the following:

(a) P Inc makes some metadata of the portfolio management application available to C Inc. C Inc. uses this metadata to prepare a page that users can use to manage their portfolios.

(b) A user of C Inc, U visits C Inc’s web site and clicks on a link to portfolio management.

(c) C Inc then sends a request to P Inc to get the initial view of the portfolio management application. P Inc then responds with markup (as HTML) that represents the first page of the application.

(d) C Inc then processes the returned markup and prepares it for aggregation. If the returned markup has links and forms, C Inc transforms the markup such that such links and forms, when activated return to C Inc.

(e) C Inc aggregates the markup into a page, and writes it into the response of the browser’s connection.

(f) U reviews the page. U finds a form to submit a new stock symbol. U fills in the ticker symbol of a stock and other details, and submits the form.

(g) C Inc receives the request containing the form data submitted by U. Upon determining that this request is meant for the portfolio management application, C Inc sends another request to P Inc to process the user interaction.

(h) P Inc processes the user interaction request and adds the sticker symbol to U’s portfolio.

(i) C Inc then sends a request to get the markup based on the current state of the portfolio. P Inc generates markup and returns.

(j) C Inc then repeats steps (d) and (e).

(k) U receives a new page containing the updated portfolio.

This scenario captures some of the essentials of the WSRP specifications. In this scenario, P Inc is a WSRP Producer offering portlets, and C Inc is a WSRP Consumer consuming portlets and aggregating portlets for users to access aggregated portlet pages. The portfolio management application is a Portlet offered by the Producer.

To implement this scenario, P Inc and C Inc can use WSRP to define various interactions, with P Inc implementing the following WSRP interfaces and operations:

(a) Service Description Interface: P Inc implements this interface to provide a metadata of itself and the list of portlets it offers. C Inc invokes this interface to obtain this metadata in step (a) of the above scenario.

(b) Markup Interface: To generate markup and to process interaction requests, P Inc implements the Markup Interface specified by WSRP.

By implementing these interfaces, and agreeing to conform to WSRP, both P Inc and C Inc can use a standard mechanism to offer and consume portlets. In addition, P Inc can offer the same portlet to X Inc as long as X Inc adheres to WSRP, and C Inc can consume portlets offered by Y Inc provided it implements WSRP interfaces.

The Service Description and Markup interfaces are the two required interfaces that must be implemented by any WSRP Producer. In addition to these two, WSRP specifies the following interfaces:

(a) Registration Interface: [TODO The spec says that registration allows “a consumer to establish a relationship with a producer”. Seems too abstract to say so here.]

(b) Portlet Management Interface; The Portlet Management interface allows Consumers to clone/destroy portlets, and customize portlets by changing any associated properties.

4 Registration Interface

5 Service Description Interface

5.1 Description

In order to set up a consumer to aggregate portlets offered by a producer, the consumer must first obtain a description of the producer, and the list of portlets offered by the producer. Based this information, the consumer will be able determine if it can successfully aggregate portlets offered by a producer, and setup its environment (for example, a page aggregating portlets) for such aggregation.

5.2 Purpose Served

The getServiceDescription of the Service Description interface operation serves this purpose. All portlet producers are required to support this operation, which returns the following:

a. Producer Capabilities: Describe the capabilities of the producer. This information helps in setting up a consumer to interact with the producer. Among other things, the response of this operation indicates the consumer whether the producer requires registration to access its portlets, and whether the consumer must explicitly initialize cookies for all markup related operations.

b. Offered Portlets: The response of this operation also includes a list of portlets that are offered by the producer, and their metadata. The portlet metadata includes a unique handle, modes and window states supported, content types that the portlet can support, in addition to a description of the portlet. In this sense, the producer acts as a portlet repository that the consumer must look up for discovering portlets.

5.3 Message Format

For example, a consumer sends a SOAP message with the following request document in the body of the message to the producer:

<urn:getServiceDescription

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</urn:getServiceDescription>

Message 1 Service Description Request

This is the most basic form of a serviceDescription request that a consumer could send to a producer. To this request, the producer sends a getServiceDescriptionResponse document that includes its capabilities and offered portlets. Here is an example of a typical response:

<urn:getServiceDescriptionResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>false</urn:requiresRegistration>

 <urn:offeredPortlets>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 <urn:markupTypes>

 <urn:mimeType>text/html</urn:mimeType>

 <urn:modes>wsrp:view</urn:modes>

 <urn:windowStates>wsrp:normal</urn:windowStates>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

 </urn:markupTypes>

 <urn:description xml:lang="en-US">

 <urn:value>Stock portfolio manager</urn:value>

 </urn:description>

 <urn:title xml:lang="en-US">

 <urn:value>Manage Portfolio</urn:value>

 </urn:title>

 </urn:offeredPortlets>

 <urn:requiresInitCookie>perUser</urn:requiresInitCookie>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

</urn:getServiceDescriptionResponse>

Message 2: Service Description Response

Note the following from this response:

a. Registration: The producer does not require registration to invoke other WSRP operations.

b. Cookies: For each user that this producer is invoked for, the consumer must initialize cookies with the producer. [TODO: Details? Just calling initCookie()? In addition the consumer is required to manage returned cookies!]

c. Locales: The producer supports “en” and “en-US” locales. This does not necessarily mean that portlets offered by this producer are limited to generating markup in these locales.

d. Portlets: The producer offers a single portlet, uniquely identified by a protletHandle “portfolioManager”. The protletHandle is an opaque reference assigned by the producer, and both the consumer and the producer use this handle to refer to the portlet in all interactions, and the producer and/or consumer may associate data (such as properties) with this handle.

e. The portfolioManager portlet returns content of MIME type “text/html”. As with locales, portlets on this producer are not limited to generating markup in this MIME type.

f. This portlet could be rendered in the “view” mode and “normal” state.

Here is a sample response from a producer that with a different set of capabilities and portlets, and requires registration to offer portlets, for the service description in Message 1.

<urn:getServiceDescriptionResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>true</urn:requiresRegistration>

 <urn:requiresInitCookie>perGroup</urn:requiresInitCookie>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

</urn:getServiceDescriptionResponse>
Message 3: Service Description Response (without registration)

The first point to notice is that this producer requires registration. This service description does not provide much information to the consumer, and such a producer may provide more useful description based on consumer registration. If registration requires additional data, the producer may provide registration properties that the consumer must supply values for.

The consumer may then register with the producer, and resend the following getServiceDescription request with the registrationHandle returned by the producer upon registration.

<urn:getServiceDescription

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>99999</urn:registrationHandle>

 </urn:registrationContext>

</urn:getServiceDescription>

Message 4: Service Description Request (with registration)

Upon validating the registrationHandle, the producer may now send a response that includes portlets it offers.

<urn:getServiceDescriptionResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>true</urn:requiresRegistration>

 <urn:offeredPortlets>

 <urn:portletHandle>docRepository</urn:portletHandle>

 <urn:markupTypes>

 <urn:mimeType>text/html</urn:mimeType>

 <urn:modes>wsrp:view</urn:modes>

 <urn:windowStates>wsrp:normal</urn:windowStates>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

 </urn:markupTypes>

 <urn:groupID>docs</url:groupID>

 <urn:description xml:lang="en-US">

 <urn:value>Upload Files</urn:value>

 </urn:description>

 <urn:title xml:lang="en-US">

 <urn:value>Upload Files</urn:value>

 </urn:title>

 <urn:displayName xml:lang="en-US">

 <urn:value>Upload Files</urn:value>

 </urn:displayName>

 <urn:usesMethodGet>false</urn:usesMethodGet>

 <urn:templatesStoredInSession>

 true

 </urn:templatesStoredInSession>

 <urn:doesUrlTemplateProcessing>

 true

 </urn:doesUrlTemplateProcessing>

 </urn:offeredPortlets>

 <urn:offeredPortlets>

 <urn:portletHandle>trade</urn:portletHandle>

 <urn:markupTypes>

 <urn:mimeType>text/html</urn:mimeType>

 <urn:modes>wsrp:view</urn:modes>

 <urn:windowStates>wsrp:normal</urn:windowStates>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

 </urn:markupTypes>

 <urn:groupID>finance</url:groupID>

 <urn:description xml:lang="en-US">

 <urn:value>Trading Desk</urn:value>

 </urn:description>

 <urn:title xml:lang="en-US">

 <urn:value>Trade</urn:value>

 </urn:title>

 <urn:displayName xml:lang="en-US">

 <urn:value>Trade</urn:value>

 </urn:displayName>

 <urn:usesMethodGet>true</urn:usesMethodGet>

 <urn:templatesStoredInSession>

 true

 </urn:templatesStoredInSession>

 <urn:doesUrlTemplateProcessing>

 true

 </urn:doesUrlTemplateProcessing>

 </urn:offeredPortlets>

 <urn:requiresInitCookie>perUser</urn:requiresInitCookie>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

</urn:getServiceDescriptionResponse>

Message 5: Service Description Response (with registration)

When compared to the service description shown in Message 2, the above response shows certain additional requirements on the producer:

a. Since this producer requires registration, the consumer is required to supply the registrationHandle with all its interactions with the producer.

b. Note that each portlet offered by this producer specified a different group ID, and that this producer requires cookies to be established once per group per user. A producer may use the notion of a group to share data (such as session data) between portlets in the same group. [Not clear enouth.]

c. While the first portlet does not use markup that uses method GET in HTML forms in its markup, the second portlet does. Since consumers typically embed additional query parameters, such parameters may be lost with HTML forms using method GET, and a consumer may or may not be able to aggregate such portlets without some special handling (such as embedding hidden parameters in the forms generated). If the consumer is not capable of such special handling, it may choose not to use such a portlet.

d. Both the portlets offered by this producer can process URL templates, implying that the producer can rewrite URLs using templates supplied by the consumer.

e. Both the portlets store templates in user session, and the consumer can send URL templates once per session and not with every markup request.

5.4 Faults

A consumer invoking the getServiceDescription operation must be prepared to handle the following faults:

a. InvalidRegistration: A producer throws this fault when the registration data supplied by the consumer is not valid. The consumer may resubmit this getServiceDescription with the correct registrationHandle and registrationState.

b. OperationFailed: A producer throws this fault when it fails to process the getServiceDescription operation.

6
7 [In progress]Markup Interface

8 Portlet Management Interface

9 Use Profiles

The Use Profile describes at a high level the basic functionality of a Producer or Consumer implementation. These are to be regarded as merely a general guideline. Implementers will likely compose their implementation by selecting from a “palette” of functionality, and later sections of this primer lay out these use profiles across several functional axes.

An implementation can therefore be said to conform across potentially several different functional areas, offering advanced features in some areas while remaining “simple” or even “base” in others.

9.1 Producer Levels

9.1.1 Base

· Implements only the MUST interfaces

· No state (session or persistent); uses opaque mechanism to send state back to Consumer

· No cloning

· No initialization required

· Does not rewrite URLs in markup

· Does not require registration

9.1.2 Simple

· May request initialization; could store state in cookies

· Supports cloning

· May require registration (out-of-band).

· Session state; creates and sends session handles to the Consumer

9.1.3 Complex

· May rewrite URLs (requires Consumer templates)

· May offer both in-band and out-of- band registration

· Persistent local state

· May support grouping of portlets

· Cache validation

9.2 Consumer Levels

9.2.1 Base

· Implements only the MUST interfaces

· VIEW mode, NORMAL window state only

· Supplies no user information (portlet may fault or degrade functionality in response).

· Rewrites URLs

· Initializes the Producer if required (initCookie)

· Handles Producer cookies

· Limited markup types (e.g. html)

· Does not clone (“readOnly”; may limit functionality of portlets that offer personalization)

· No in-band registration

9.2.2 Simple

· Support for standard modes and window states

· Support for in-band registration

· Supplies basic user information (e.g., identity and authorization type)

· Caching according to Producer-supplied cache control.

· May explicitly clone portlets.

· Handles implicit clones (“cloneBeforeWrite”).

9.2.3 Complex

· May supply URL rewrite templates to a Producer that is capable of rewriting URLs in portlet markup.

· Multiple markup types (e.g. html and wml)

· Complex user management, willing to supply standard/extended user attributes May support custom window states and/or modes.

· Multiple levels of user access (user categories)

· Localization

· May use explicit property-setting mechanism; create custom UI for property management.

10 Basic Topics/Issues

10.1 Markup

OperationFailed semantics

Reference portlet style guide?

10.2 Caching

10.3 Persistence

Opaque state

Cloning, including semantics for hasUserSpecificState

10.4 Statefulness

Cookie

Navigational

Session

10.5 Modes/Window States

Carry JSR 168-specific modes

10.6 URL Rewriting

11 Advanced Topics/Issues

11.1 User Profile and personalization

Unauthenticated (“guest”) access

userContextKey == UserCategory, for conveying common attributes for a class of users

11.2 Localization and Internationalization

11.3 Security

SSL (Client)

HTTP Digest

SAML/XACML (not for 1.0)

11.4 Extensions

Why? When? etc.

11.5 Carrying custom modes

JSR 168

11.6 Multipart upload

Producer must be prepared to reconstruct the input from a varietly of representations (single UploadContext, multiple UploadContexts)

Minimal required attributes/headers?

6

wsrp-primer-1.0
wsrp-primer-1.0

