Web Services for Remote Portlets 1.0 Primer
Version 0.41

10/10/2003

[image: image1.png]OASIS

Web Services for Remote Portlets 1.0 Primer
Draft 0.41, 10 October 2003

Document identifier:

wsrp-primer-1.0 (Word)

Location:

http://www.oasis-open.org/committees/wsrp
Editors:

Subbu Allamaraju, BEA Systems <subbu@bea.com>

Rex Brooks, Starbourne Communications <rexb@starbourne.com>

Alan Kropp, Vignette Corporation <akropp@vignette.com>

Contributors:

Gil Tayar, WebCollage <Gil.Tayar@webcollage.com>
Abstract:

This is the WSRP 1.0 primer. The purpose of this document is to provide a detailed explication of the main concepts contained in the WSRP 1.0 specification. In that sense, this is a companion document to the specification. Although this primer is not normative, it’s tutorial approach is intended as a guide for implementers and other technical readers. This document explains the abstractions of the specification in a “real-world” perspective based on a step by step approach representing practical use case scenarios.

Status:

This version is a draft of the non-normative WSRP 1.0 primer. Comments about points needing clarification are much appreciated and may be emailed to Alan Kropp.

If you are on wsrp@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to wsrp-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to wsrp-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

[errata?]

Copyright © 2003 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

31
Introduction

31.1
Standard remote content protocol

41.2
Promote rigorous portlet implementations

41.3
Framework for sophisticated scenarios

41.4
Using common WS-related standards

42
Concepts

42.1
Producers and Consumers

52.2
Producer-Consumer-User Interaction

52.2.1
Modes and States

52.2.2
Markup Generation

53
Basic Scenario

74
Registration Interface

75
Service Description Interface

75.1
Description

75.2
Purpose Served

75.3
Message Format

175.4
Faults

176
Markup Interface

176.1
Description

176.2
Purpose Served

227
Portlet Management Interface

228
Use Profiles

228.1
Producer Levels

228.1.1
Base

228.1.2
Simple

228.1.3
Complex

238.2
Consumer Levels

238.2.1
Base

238.2.2
Simple

238.2.3
Complex

249
Basic Topics/Issues

249.1
Markup

249.2
Caching

249.3
Persistence

249.4
Statefulness

249.5
Modes/Window States

249.6
URL Rewriting

249.7

2410
Advanced Topics/Issues

2410.1
User Profile and personalization

2510.2
Localization and Internationalization

2510.3
Security

2510.4
Extensions

2510.5
Carrying custom modes

2510.6
Multipart upload

1 Introduction

There are numerous sources of high-level introductory information about WSRP 1.0, including the introductory section of the specification itself, and the WSRP White Paper [link]. The first-time reader is encouraged to explore these resources, before proceeding with the extended examples and explanations contained here.

The guiding perspective on which this specification was built should be of primary interest to potential implementers. This perspective is framed by the question of what problems WSRP is intended to solve. The specification’s procedural approach to solving these questions can be divided into a few main areas:

1.1 Standard remote content protocol

A standard remote content protocol replaces many proprietary, product-specific solutions. This benefits all parties, Consumers (i.e. portals) and portlet developers alike.

1.2 Promote rigorous portlet implementations

WSRP raises the bar of conformance for this standard in many respects for what constitutes a “good or effective” portlet implementation. The specification makes specific recommendations regarding markup fragment rules, representing statefulness, ensuring security, etc., with an eye toward maximizing the usefulness and integrity of portlet services. This is not to suggest that WSRP mandates a “one size fits all” approach.

1.3 Framework for sophisticated scenarios

WSRP 1.0 is the foundation on which increasingly sophisticated implementations are to be specified. These include the ability for Consumers to customize a portlet’s content, and to create application process flows that coordinate the activities of multiple portlets, from multiple Producers.

1.4 Using common WS-related standards

The plethora of standards and technologies that have relevance to the web services world presents a daunting and growing challenge to implementers, in terms of what to select and how to design a solution. Many of these end up as one-off, proprietary solutions of limited scope, with a limited shelf life. WSRP provides an integrated framework of existing and emerging standards and technologies based on sound criteria developed through a rigorous process.
WSRP builds on a few fundamental standards, most notably XML and SOAP, while allowing for the implementation of evolving standards, to deliver a protocol rich in abstractions and operations that web service implementers and Consumers require.

2 Concepts

[TODO: Rex/Alan: I added this to keep track of some terms/topics that need some intro so that we can refer to these in the latter sections. Please feel free to suggest/make changes. Or we may reassess the need for this section as we get the complete shape of the primer clear.]

2.1 Producers and Consumers

The WSRP specification uses the terms Producer and Consumer to describe parties implementing the specification.

The Producer is a web service offering one or more portlets and implementing various WSRP interfaces/operations. Depending on the implementation, a producer may offer just one portlet, or may provide a runtime (or a container) for deploying and managing several portlets.

The Consumer is a web service client that invokes producer offered WSRP web services and provides an environment for users to interact with portlets offered by one or more such producers.

The nearly limitless variety of Producers and Consumers have been kept in mind in the development of WSRP, but for the purposes of a useful primer, we use necessarily simple examples, It is not our intention to address all such categories nor to replace the material in the specification which covers a wider range than a primer should. So, when you uncover your own questions, and discover that any particular question is not covered here, it is suggested that you have a copy of the specification available for quick reference.

TODO: Refer to use profiles section.

2.2 Producer-Consumer-User Interaction
[Refer to #1.2 in spec to describe how these terms are modeled as “Actors” in the process of producing “User-Facing” presentation.]
2.2.1 Modes and States

[Just refer to #6.8 & # 6.9 in the spec? Do we need to talk about it in the primer? Rex thinks so-basic stage-setting for Basic Senario. And some discussion in Markup Interface Section.]
2.2.2 Markup Generation

[Refer to #4.2 in spec to introduce the concept that the end product of WSRP is the Portlet rendered in client browser page
3 Basic Scenario

[TODO: Some fictitious names for producer and consumer – suggestions?]

P Inc would like to host a web based portfolio management application. C Inc would like to provide its users access to the portfolio management application on its web site.

In order to offer this portfolio management application, C Inc and P Inc agree on the following:
[Subbu: Regarding the additions made by Rex below – Since we’re just discussing a problem here, I don’t think we should talk about WSRP specifics intermixed here. I propose that we keep the scenario abstract here, and limit such mapping to WSRP to the discussion following this scenario.]
(a) P Inc makes some metadata of the portfolio management application available to C Inc. As an option this can be facilitated by publishing the metadata in registries such as UDDI and ebXML using the Registration Interface. C Inc. uses this metadata to prepare a portlet page that users can use to manage their portfolios. This can be facilitated by conducting a search in a registry.
(b) A user of C Inc, U visits C Inc’s web site, which operates as a WSRP Portal, and clicks on a link to portfolio management portlet.

(c) C Inc then sends a request to P Inc to get the initial view of the portfolio management application portlet. This constitutes an invocation of the portlet using the getMarkup() operation. P Inc then responds by transmitting markup (as HTML) that represents the first page of the application. This is a setMarkup() operation.
(d) C Inc then processes the returned markup and prepares it for aggregation. If the returned markup has links and forms, C Inc transforms the markup such that such links and forms, when activated return to C Inc., when activated by user interaction.
(e) C Inc aggregates the markup into a page, and writes it into the response of the browser’s connection. The aggregated page is then transmitted to U.
(f) U reviews the page. U finds a form to submit a new stock symbol. U fills in the ticker symbol of a stock and other details, and submits the form.

(g) C Inc receives the request containing the form data submitted by U. Upon determining that this request is meant for the portfolio management application, C Inc sends another request to P Inc to process the user interaction, a performBlockingInteraction() operation.
(h) P Inc processes the user interaction request, a BlockingInteraction, adds the sticker symbol to U’s portfolio portlet and sends an updateReponse to C..

(i) C Inc then sends a request to get the changed markup based on the current state of the portfolio. P Inc generates markup and returns.

(j) C Inc then repeats steps (d) and (e).

(k) U receives a new page containing the updated portfolio.

This scenario captures some of the essentials of the WSRP specifications. In this scenario, P Inc is a WSRP Producer offering portlets, and C Inc is a WSRP Consumer consuming portlets and aggregating portlets for users to access aggregated portlet pages. The portfolio management application is a Portlet offered by the Producer.

To implement this scenario, P Inc and C Inc can use WSRP to define various interactions, with P Inc implementing the following WSRP interfaces and operations:

(a) Service Description Interface: P Inc implements this interface to provide a metadata of itself and the list of portlets it offers. C Inc invokes this interface to obtain this metadata in step (a) of the above scenario.

(b) Markup Interface: To generate markup and to process interaction requests, P Inc implements the Markup Interface specified by WSRP.

By implementing these interfaces, and agreeing to conform to WSRP, both P Inc and C Inc can use a standard mechanism to offer and consume portlets. In addition, P Inc can offer the same portlet to X Inc as long as X Inc adheres to WSRP, and C Inc can consume portlets offered by Y Inc provided it implements WSRP interfaces.

The Service Description and Markup interfaces are the two required interfaces that must be implemented by any WSRP Producer. In addition to these two, WSRP specifies the following interfaces:

(a) Registration Interface: Registration interface allows a Consumer to register with a Producer and let the Producer customize its behavior for each Consumer based on the registration information.
(b) Portlet Management Interface; The Portlet Management interface allows Consumers to clone/destroy portlets, and customize portlets by changing any associated properties.

In the following sections, we will discuss these interfaces in detail by considering each aspect of the above scenario.

4
5 Service Description Interface

5.1 Description

In order to set up a consumer to aggregate portlets offered by a producer, the consumer must first obtain a description of the producer, and the list of portlets offered by the producer. Based this information, the consumer will be able determine if it can successfully aggregate portlets offered by a producer, and setup its environment (for example, a page aggregating portlets) for such aggregation.
The normative WSDL of all WSRP Interface data structures can be found in Section 14 referencingt http://www.oasis-open.org/committees/wsrp/specifications/version1/wsrp_v1_interfaces.wsdl
[Subbu: Move this reference to the end of the previous section. Also suggest that readers must keep referring to the WSRP schema for various data structures.]
5.2
The getServiceDescription() operation of the Service Description Interface serves the purpose of identifying portlets and their properties.

[image: image2.wmf]Consumer

Get service description

Metadata + Offered Portlets

Producer

Figure 1: Service Description

All portlet producers are required to support this operation, which returns the following:

a. Producer Capabilities: Describe the capabilities of the producer. This information helps in setting up a consumer to interact with the producer. Among other things, the response of this operation indicates to the consumer whether the producer requires registration to access its portlets, and whether the consumer must explicitly initialize cookies for all markup related operations.

b. Offered Portlets: The response of this operation also includes a list of portlets that are offered by the producer, and their metadata. The portlet metadata includes a unique handle, modes and window states supported, content types that the portlet can support, in addition to a description of the portlet. In this sense, the producer acts as a portlet repository that the consumer must look up for discovering portlets.

5.3 Message Format

Scenario: C Inc would like to discover the capabilities of P Inc, and the list of portlets offered by P Inc.

C Inc sends a SOAP message with the following request document in the body of the message to P Inc.:

<urn:getServiceDescription

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</urn:getServiceDescription>

Message 1 Service Description Request
This is the most basic form of a serviceDescription request that a consumer could send to a producer. To this request, the producer sends a getServiceDescriptionResponse document that includes its capabilities and offered portlets. Here is an example of a typical response:

<urn:getServiceDescriptionResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>false</urn:requiresRegistration>

 <urn:offeredPortlets>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 <urn:markupTypes>

 <urn:mimeType>text/html</urn:mimeType>

 <urn:modes>wsrp:view</urn:modes>

 <urn:windowStates>wsrp:normal</urn:windowStates>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

 </urn:markupTypes>

 <urn:description xml:lang="en-US">

 <urn:value>Stock portfolio manager</urn:value>

 </urn:description>

 <urn:title xml:lang="en-US">

 <urn:value>Manage Portfolio</urn:value>

 </urn:title>

 </urn:offeredPortlets>

 <urn:requiresInitCookie>perUser</urn:requiresInitCookie>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

</urn:getServiceDescriptionResponse>

Message 2: Service Description Response

Note the following from this response:

a. Registration: The producer does not require registration to invoke other WSRP operations.

b. Cookies: The consumer is required to initialize and manage cookies for each user requesting a portlet from this producer. [TODO: Details? Just calling initCookie()? In addition the consumer is required to manage returned cookies!]

c. Locales: The producer supports “en” and “en-US” locales. This does not necessarily mean that portlets offered by this producer are limited to generating markup in these locales.

d. Portlets: The producer offers a single portlet, uniquely identified by a protletHandle “portfolioManager”. The portletHandle is an opaque reference assigned by the producer, and both the consumer and the producer use this handle to refer to the portlet in all interactions, and the producer and/or consumer may associate data (such as properties) with this handle.

e. The portfolioManager portlet returns content of MIME type “text/html”. As with locales, portlets on this producer are not limited to generating markup in this MIME type.

f. This portlet could be rendered in the “view” mode and “normal” state.

5.4 Faults

A consumer invoking the getServiceDescription operation must be prepared to handle the following faults:

a. InvalidRegistration: A producer throws this fault when the registration data supplied by the consumer is not valid. As we shall see in the next section, Producers requiring registration require that the Consumer supply valid registration data in all invocations.
b. OperationFailed: A producer throws this fault when it fails to process the getServiceDescription operation.
6 Registration Interface

6.1 Description

The purpose of the registration interface is to allow a consumer to register with a producer, such that the producer can uniquely identity each consumer that is interacting with it, and to let the Producer use the registration context to customize its responses for each Consumer.
The registration interface specifies the following operations:

a. register: To let a consumer register with a Producer. The Consumer may have to supply certain producer-specified registration properties for registration. Upon registration, the Producer assigns a unique RegistrationContext for the Consumer. The Consumer must then supply this RegistrationContext with each request it makes to the Producer.

b. modifyRegistration: To let a Consumer modify an existing registratioin. The Consumer may supply registration properties. The Producer may assign a new RegistrationContext to the Consumer.
c. deregister: To let the Consumer terminate a registration.
The WSRP specification does not specify/restrict any possible application of registration. In reality, WSRP alone cannot dictate how a Consumer enters into a relationship with a Producer. Since such a relationship may often involve legal and contractual obligations between a Producer and a Consumer, However, once such obligations are met, a Producer may use registration to tailor its behavior for each Consumer. Here are some possible applications:

a. Keep track of portlets used by each Consumer, by associating portlet customizations with consumer

b. Tailor the list of portlets offered to each Consumer, such that the Producer may offer a separate set of portlets for each Consumer.
c. A Producer may offer/deny certain capabilities (such as the ability to clone portlets) for a given Consumer based on the registration context.
A Producer indicates that registration is required and that certain data is required for registration via its response to a getServiceDescription request.

6.2 Message Format

P Inc requires that only registered Consumers can use any of its offered portlets. P Inc also requires a service agreement and certain contractual obligations prior to registration,

C Inc enters into a service agreement with P Inc and fulfills all the necessary obligations. P Inc then issues a service ID and requires that C Inc supply C Inc’s DUNS number and the service ID for registration. Note that these transactions happen outside the scope of WSRP.
C Inc then registers with P Inc by supplying its DUNS number and the service ID.
Scenario 1: Registration
Since P Inc now requires registration, P Inc sends the following response to a getServiceDescription request from C Inc>.

<urn:getServiceDescriptionResponse

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>true</urn:requiresRegistration>

 <urn:registrationPropertyDescription>

 <urn:propertyDescriptions type="xs:string" name="dunsNum">

 <urn:label xml:lang="en">

 <urn:value>DUNS Number</urn:value>

 </urn:label>

 </urn:propertyDescriptions>

 <urn:propertyDescriptions type="xs:string" name="serviceId">
 <urn:label xml:lang="en">

 <urn:value>Service ID</urn:value>

 </urn:label>

 </urn:propertyDescriptions>

 </urn:registrationPropertyDescription>

</urn:getServiceDescriptionResponse>

Message 3: Service Description Response (requiring registration)

The first point to note from this response is that this producer requires registration, and that the producer requires two registration properties to be supplied for registration. Beyond this, this service description response does not provide much information to the consumer.
C Inc then sends the following register request to P Inc supplying the DUNS number and service ID that was previously assigned to it by P Inc.

<urn:register xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:consumerName>C Inc</urn:consumerName>

 <urn:consumerAgent>C Inc Portal</urn:consumerAgent>
 <urn:methodGetSupported>false</urn:methodGetSupported>
 <urn:registrationProperties xml:lang="en" name="dunsNum">

 <urn:stringValue>123456</urn:stringValue>

 </urn:registrationProperties>

 <urn:registrationProperties xml:lang="en" name="serviceId">

 <urn:stringValue>abcde</urn:stringValue>

 </urn:registrationProperties>

 </urn:register>
Message 4: Registration Request
In addition to the registration properties, the consumer sends some additional properties of the consumer itself:

a. Consumer name: Name of the consumer

b. Consumer agent: Name and version of the consumer

c. Method GET support: A boolean to indicate if the consumer can aggregate markup containing forms with method GET.
The Producer P Inc validates this request for registration, creates a registration context, and returns the following response:

<urn:registerResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationHandle>123.456</urn:registrationHandle>

</urn:registerResponse>
Message 5: Registration Response
In this response, the registrationContext represents a registration relationship between the P Inc and C Inc, and contains a registrationHandle assigned to C Inc by P Inc. Once a Consumer obtains a registrationContext, the consumer must supply the registrationContext with all subsequent requests to the Producer. Since the registrationContext must be maintained for all future invocations, the registrationContext must be maintained persistently by the Consumer and/or the Producer.
If the Producer is capable of managing persistent storage of registration data, the Producer may create a registrationHandle and return the same in the registrationContext as shown above.
However, if the Producer is not capable of managing persistent storage of registration data, the Producer may choose to send the result of registration as registrationState to the Consumer.
[Subbu: I’m interested to know what others think about highlighting certain aspects of the spec like the one above.]

C Inc then sends another service description request to P Inc, this time supplying the registrationContext.

<urn:getServiceDescription

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>123.456</urn:registrationHandle>

 </urn:registrationContext>

</urn:getServiceDescription>

Message 6: Service Description Request (with registration)

Upon validating the registrationContext, P Inc now sends a response that includes portlets it offers.

<urn:getServiceDescriptionResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>true</urn:requiresRegistration>
 <urn:offeredPortlets>
 <urn:portletHandle>docRepository</urn:portletHandle>

 <urn:markupTypes>

 <urn:mimeType>text/html</urn:mimeType>

 <urn:modes>wsrp:view</urn:modes>

 <urn:windowStates>wsrp:normal</urn:windowStates>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

 </urn:markupTypes>

 <urn:groupID>docs</url:groupID>

 <urn:description xml:lang="en-US">

 <urn:value>Upload Files</urn:value>

 </urn:description>

 <urn:title xml:lang="en-US">

 <urn:value>Upload Files</urn:value>

 </urn:title>

 <urn:displayName xml:lang="en-US">

 <urn:value>Upload Files</urn:value>

 </urn:displayName>

 <urn:usesMethodGet>false</urn:usesMethodGet>

 <urn:templatesStoredInSession>

 true

 </urn:templatesStoredInSession>

 <urn:doesUrlTemplateProcessing>

 true

 </urn:doesUrlTemplateProcessing>

 </urn:offeredPortlets>
 <urn:offeredPortlets>
 <urn:portletHandle>trade</urn:portletHandle>

 <urn:markupTypes>

 <urn:mimeType>text/html</urn:mimeType>

 <urn:modes>wsrp:view</urn:modes>

 <urn:windowStates>wsrp:normal</urn:windowStates>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

 </urn:markupTypes>

 <urn:groupID>finance</url:groupID>

 <urn:description xml:lang="en-US">

 <urn:value>Trading Desk</urn:value>

 </urn:description>

 <urn:title xml:lang="en-US">

 <urn:value>Trade</urn:value>

 </urn:title>

 <urn:displayName xml:lang="en-US">

 <urn:value>Trade</urn:value>

 </urn:displayName>

 <urn:usesMethodGet>true</urn:usesMethodGet>

 <urn:templatesStoredInSession>

 true

 </urn:templatesStoredInSession>

 <urn:doesUrlTemplateProcessing>

 true

 </urn:doesUrlTemplateProcessing>

 </urn:offeredPortlets>

 <urn:requiresInitCookie>perUser</urn:requiresInitCookie>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

</urn:getServiceDescriptionResponse>

Message 7: Service Description Response (with registration)

When compared to the service description shown in Message 2, the above response shows certain additional requirements on the producer:

a. Since this producer requires registration, the consumer is required to supply the registrationHandle with all its interactions with the producer.

b. Note that each portlet offered by this producer specified a different group ID, and that this producer requires cookies to be established once per group per user. A producer may use the notion of a group to share data (such as session data) between portlets in the same group. [Not clear enouth.]
[Agreed. Maybe just supplying the concept of the groupID per user with a cookie is sufficient at this stage without enlarging upon how it could be used. Maybe we should not get this complex this early and save it for a more advanced scenario, especially since we have not yet gotten to a more tutorial approach, or to actual tutorial examples showing the process from message to markup coding (and css) to display. However, I think this may solve itself if we work out a clear sequence from simpler to more complex with the tutorials]
[Subbu: TODO: I’ll update the messages to use defaults to the extent possible and skip more complex elements, such as groupID, requiresInitCookie and so so.]
c. While the first portlet does not use markup that uses method GET in HTML forms in its markup, the second portlet does. Since consumers typically embed additional query parameters, such parameters may be lost with HTML forms using method GET, and a consumer may or may not be able to aggregate such portlets without some special handling (such as embedding hidden parameters in the forms generated). If the consumer is not capable of such special handling, it may choose not to use such a portlet.[This also seems a bit on the complex side.]
d. Both the portlets offered by this producer can process URL templates, implying that the producer can rewrite URLs using templates supplied by the consumer.

e. Both the portlets store templates in user session, and the consumer can send URL templates once per session and not with every markup request.

[Note: I think we need to think our sequence through a bit more and get Registration covered before Service Description Interface is covered here. While optional, understanding registration, with WSDL examples from which these types come into play will make it easier to understand. Also, we can include some description of how “trade” and “financial” portlets relate to one another. This will also help understanding how they would appear on a page, or how any other set of examples without the addition of session-handling concerns using groupIDs this early would appear on a page.]

[Subbu: Agree. I’ll simplify the messages in the next draft.]
P Inc revises its terms for service, and enters into a new service agreement with C Inc. In this process, it updates the service ID, effectively invalidating the current registration context for C Inc.
C Inc subsequently receives InvalidRegistration faults for various requests to C Inc.

C Inc now must modify the registration relationship to continue to use P Inc’s portlets.
Scenario 2: Modify Registration
Upon entering into a new service agreement and obtaining a new service ID, C Inc sends the following modifyRegistration request to P Inc.

<urn:modifyRegistration

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>123.456</urn:registrationHandle>

 </urn:registrationContext>

 <urn:registrationData>

 <urn:consumerName>C Inc</urn:consumerName>

 <urn:consumerAgent>C Inc Portal</urn:consumerAgent>

 <urn:registrationProperties xml:lang="en" name="dunsNum">

 <urn:stringValue>123456</urn:stringValue>

 </urn:registrationProperties>

 <urn:registrationProperties xml:lang="en" name="serviceId">

 <urn:stringValue>uvxyz</urn:stringValue>

 </urn:registrationProperties>

 </urn:registrationData>

</urn:modifyRegistration>
Message 8: Request to Modify Registration
This request is similar to the registration request (TODO ref to message) except for a new value for a registration property.

P Inc validates the new values for registration properties, validates the registration, and responds with the following message:
<urn:modifyRegistrationResponse xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>
Message 9: Modify Registration Response

The response simply indicates that the request for modification of registration has been accepted.
If the Producer is not capable of managing persistent storage of the registration data, the Producer may return the updated registration state as registrationState in the modifyRegistrationResponse.

After modifying a registration relationship, C Inc can continue to use the registrationHandle as it has now been reinstated with P Inc.

P Inc and C Inc decide to terminate the registration relationship, and C Inc no longer wants to host P Inc’s portlets.

Scenario 3: Deregistration
In order to terminate the registration relationship, C Inc sends a deregister request with its registrationHandle to P Inc as shown below.
<urn:deregister xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationHandle>123.456</urn:registrationHandle>

</urn:deregister>
Message 10: Deregister Request

P Inc then deregisters the consumer and may clean up any resources/state created for C Inc, and returns the following response.

<urn:deregisterResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>
Message 11: Deregister Response

After this step, C Inc can no longer use the registrationHandle for its requests to P Inc.

Figure X shows a possible sequence of interactions between C Inc and P Inc for registration.

[image: image3.wmf]Consumer

Get Service Description as an anonymous consumer

Metada + Offered Portlets

Producer

Metadata indicates that registration is required,

and certain data is required for registration

Register (with registration properties)

Registration Context (uniquely identifies a consumer)

Get Service Description (as a registered consumer)

Metada + Offered Portlets

Validate registration

properties and register

Modify registration (with registration properties)

Updated Registration

Subsequent calls to Producer with the

Registration Context

Subsequent calls to Producer with the

Registration Context

Deregister

Validate registration

properties and update

registration

Figure 2: Registration [TODO: Better caption]
6.3 Faults

A consumer invoking operations on the registration interface must be prepared to handle the following faults:

a. MissingParameters: A Producer throws this fault when certain expected data is missing in a given request. For example, in our scenario, P Inc sends this fault when C Inc sends a registration request without the service ID or the DUNS number.
b. InvalidRegistration: A producer throws this fault when the registration data supplied by the consumer is not valid. In the scenarios discussed above, P Inc sends this fault when C Inc invokes P Inc without modifying the registration relationship after entering into a revised service agreement. P Inc also sends this fault if C Inc sends the registrationHandle after deregistration.
c. OperationFailed: A producer throws this fault when it fails to process any operation.

6.4

d.
e.
7
8 Markup Interface

8.1 Description
In order for a consumer to produce a viewable display of aggregated portlets offered by a producer, the consumer must first obtain the display information, the markup file or markup fragment, formatted in HTML or XHTML for a portlet from the producer. This pass-through of portlets offered by the producer with little or no change, until the user interacts with the features of the portlet is one of the primary benefits of using WSRP. The Markup Interface is required.
The normative WSDL of all WSRP Interface data structures can be found in Section 14 referencingt http://www.oasis-open.org/committees/wsrp/specifications/version1/wsrp_v1_interfaces.wsdl.

8.2 Purposes Served

The getMarkup() operation of the Markup Interface serves the purpose of providing the portlet’s display instructions and current values for the portlet’s properties. The constitutes the current state of the portlet requested. The first getMarkup() operation that invokes an instance of a portlet from a producer also constitutes the initiation of the session which will be represented by the sessionID provided by the Producer in the getMarkupResponse. All portlet producers are required to support this operation, which returns the following:

a. RegistrationContext
b. PortletContext

c. RuntimeContext

d. UserContext

e. MarkupParams
The performBlockingInteraction() operation of the Markup Interface serves the purpose of changing the portlet’s display instructions and/o current values for the portlet’s properties. The constitutes a new current state of the portlet requested
8.3 Message Format

For example, a consumer sends a SOAP message with the following request document in the body of the message to the producer:

<urn:getMarkup

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</urn:getMarkup>

Message 12 Markup Request

This is the most basic form of a Markup request that a consumer could send to a producer. To this request, the producer sends a getMarkupResponse document that includes RegistrationContext, PortletContext, RuntimeContext, UserContext and MarkupParams
. Here is an example of a typical response:

<urn:getMarkupResponse…

…
</urn:getMarkupResponse>

Message 13: Markup Response

Note the following from this response:

a. RegistrationContext: The producer is required to return a registrationHandle as a Handle if Registration has occurred.
b. PortletContext: The producer is required to return a portletHandle as a Handle. The producer may optionally
c. RuntimeContext: RuntimeContext: The producer is required to return a userAuthentication as a string. Producer may optionally return a portletInstanceKey as a Key, a namespacePrefix as a string, any templates as Templates, a sessionID as an ID and/or any extensions as an array of Extensions.
d. UserContext: The producer is required to return a userContextKey as a Key. The producer may optionally return userCategories as an array of strings, a profile as a UserProfile and/or extensions as an array of Extensions.
e. MarkupParams: The producer is required to return secureClientCommunications as a Boolean, locales as an array of strings, mimeTypes as an array of strings, mode as a string and windowState as a string. The producer may optionally return clientData as ClientData, navigationalState as a string, markupCharacterSets as a string, validateTag as a string, validateNewModes as an array of strings, validateNewWindowStates as an array of strings and/or extensions as an array of Extensions.
Here is a sample response from a producer with a different set of capabilities and portlets, that requires registration to offer portlets, for the same service description as in Message 1.

<urn:getMarkupResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>true</urn:requiresRegistration>

 <urn:requiresInitCookie>perGroup</urn:requiresInitCookie>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

</urn:getMarkupResponse>
Message 14: Markup Response (without registration)

The first point to notice is that this producer requires registration. This service description does not provide much information to the consumer. Such a producer may provide more useful description based on consumer registration. If registration requires additional data, the producer may provide registration properties that the consumer must supply values for.

The consumer may then register with the producer, and resend the following getServiceDescription request with the registrationHandle returned by the producer upon registration.

<urn:getMarkup
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>99999</urn:registrationHandle>

 </urn:registrationContext>

</urn:getMarkup>

Message 15: Markup Request (with registration)

Upon validating the registrationHandle, the producer may now send a response that includes getMarkupResponse
<urn:getMarkupResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>true</urn:requiresRegistration>

 …

…

</urn:getMarkupResponse>

Message 16: Service Description Response (with registration)

When compared to the MarkupResponse shown in Message 3, the above response shows the certain additional requirements on the producer:

a. Since this producer requires registration, the consumer is required to supply the registrationHandle with all its interactions with the producer.

b. Detail explanation of PortletContext
c. Detail explanation of RuntimeContext

d. Detail explanation of UserContext

e. Detail explanation of MarkupParams
[Note: This section needs to fill in the details of the examples we use and show the Portlets in a Portal page. Also, it may need additional materials to set the stage for an advanced scenario.]
8.4 Interaction Operations

The Markup Interface is used in two operational processes that change the state of the portlet:
a. The performBlockingInteraction() operation: [Note: the diagram of Consumer getting external resource did not seem to fit in the context since it does not include the Producer, nor is it clear that is changes anything in the portlets, though it might impact the portal page.].

[image: image4.wmf]Consumer

Get Markup (with default mode/state)

Markup

Producer

Perform Blocking Interaction (with form data)

Navigational state and/or new mode and/or window state

User requests for a portal

page containing a portlet

Rewrite

Portal page with portlet

markup

User submits a form in

the portlet

Collect form data

Process

form data

Get Markup (with navigational state, mode, window state)

Markup

Portal page with

updated portlet markup

Rewrite

Consumer

Get Markup (with default mode/state)

Markup

Producer

User requests for a portal

page containing a portlet

Rewrite

Portal page with portlet

markup

User clicks on a link in

the portlet markup

Get Markup (with interaction state, mode, window state)

Markup

Portal page with

updated portlet markup

Rewrite

Collect form data

b. Updating persistent portal state, including InitCookie()
[image: image5.wmf]Consumer

Init Cookie

Cookies (when HTTP binding is used)

Producer

User requests for a portal

page containing a portlet

Initializes

session

User sesison ends

Release session

Subsequent calls include cookies

(when HTTP binding is used)

8.5 Modes and States
The Markup Interface is used in five “Modes:”
a. “wsrp:view” Mode:

b. “wsrp:edit” Mode:

c. “wsrp:help” Mode:

d. “wsrp:preview” Mode:

e. “wsrp:custom” Mode:

The Markup Interface is used in four “Window States:”

a. “wsrp:normal” Window State:

a. “wsrp:minimized” Window State:

a. “wsrp:maximized” Window State:

a. “wsrp:solo” Window State:
8.6 User Categories
a. User Category Assertions
8.7 Faults

A consumer invoking the getMarkup operation must be prepared to handle the following faults:
a. AccessDenied:
b. InconsistentParameters:
c. InvalidRegistration:
d. MissingParameters:
e. OperationFailed:
f. InvalidUserCategory:
g. InvalidHandle:

h. InvalidCookie:

i. InvalidSession:
j. UnsupportedWindowState:
k. UnsupportedLocale:

l. UnsupportedMimeTypes:
9 Portlet Management Interface

The purpose of the portlet management interface is to let Consumers discover and customize properties associated with a portlet. This interface also allows a Consumer to clone a portlet, and destroy it when it is no longer in use.
Portlet properties are data associated with a portlet. By declaring properties for a portlet, the portlet allows customization of its behavior for each usage. An example of a portlet property is the list of stock symbols for the portfolioManager portlet. While this portlet encapsulates the functionality necessary to manage portfolios, the portlet may declare the list of the stock symbols as a property. However, since a Producer may offer the same portlet to several Consumers, and since each such Consumer may allow a number of users to use the same portlet, it is essential to be able to manage values of portlet properties for each distinct usage of the portlet.
In typical web applications, it is common to provide a user interface to let users change values of such properties, and store values of those properties for the user persistently. This allows each user to customize the behavior of the application. However, when the same application is offered as a portlet via a Producer, such customization may be performed in two ways:

a. Each user of the portlet (via a Consumer) customizes the values of properties via the user interface provided by the portlet. For example, the portfolioManager portlet may offer a page with a form to let the users enter the list of stock symbols. When the user submits new values, the Producer or the portlet may implicitly clone the portlet (refer to XXX [Subbu: should refer to Rex’s markup section]). In this scenario, the Consumer does not directly participate in the customization process. The customization is implicit and occurs during a user interaction with the portlet.
b. The Consumer offers a user interface to let users view the values of properties, and change their values. In our sample scenario, C Inc may offer a page to administer these properties. In this scenario, the user interacts with the Consumer, and not the portlet, for customization.
The portlet management interface is designed to address the second scenario. This interface specifies mechanisms using which a Consumer and a Producer will be able to create and manage multiple customizations of a portlet. This is an optional interface, and only producers offering portlet customization may implement this interface. This interface specifies the following operations.
a. getPortletDescription: Get the description of a portlet.

b. getPortletPropertyDescription: Get the description of properties (if any) of a portlet

c. getPortletProperties: Get the properties (including their current values) of a portlet

d. setPortletProperties: Set the values of properties of a portlet. This operation may implicitly clone a portlet.
e. clonePortlet: To explicitly clone a portlet, such that any properties associated with the cloned portlet may be modified without affecting the properties of the portlet that it is cloned from

f. destroyPortlets: To destroy portlets cloned explicitly or implicitly
9.1 Message Format

9.1.1 getPortletDescription

C Inc provides a page for its users to view the description of the portfolioManager portlet.
C Inc sends a getPortletDescription request to P Inc to obtain the description of the portfolioManager portlet.

C Inc then uses the returned description to create a page.
Scenario 4: Get Portlet Description
C Inc. sends the following message to obtain the description of the portfolioManager portlet.

<urn:getPortletDescription

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CincRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 <urn:desiredLocales>en</urn:desiredLocales>
</urn:getPortletDescription>
Message 17: Get Portlet Description Request

In response, P Inc sends the following message with the description of the portlet:

<urn:portletDescription xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 <urn:markupTypes>

 <urn:mimeType>text/html</urn:mimeType>

 <urn:modes>wsrp:view</urn:modes>

 <urn:windowStates>wsrp:normal</urn:windowStates>

 <urn:locales>en</urn:locales>

 </urn:markupTypes>

 <urn:description xml:lang="en">

 <urn:value>Manages portfolios</urn:value>

 </urn:description>

 <urn:title xml:lang="en">

 <urn:value>Title</urn:value>

 </urn:title>

</urn:portletDescription>

Message 18: Get Portlet Description Response
Note that the portletDescription returned in this message is the same as the one returned by the getServiceDescription operation of the service description interface (Message XXX [Subbu: Add cross reference]).

In order to setup a page to administer the properties of the portfolioManager portlet, C Inc. invokes the getPortletPropertyDescription operation. Using the descriptions and types of these properties, C Inc designs a page.
Scenario 5: Get Portlet Property Desription
C Inc sends the following request to obtain a description of all properties associated with the portfolioManager portlet.

<urn:getPortletProperties

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portletFolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 <urn:names xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</urn:getPortletProperties>
Message 19: Get Portlet Property Description Request
The portfolioManager portlet has two properties viz tickerSymbols and refreshInterval. P Inc therefore returns the following response:
<urn:getPortletPropertyDescriptionResponse
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:modelDescription>

 <urn:propertyDescriptions type="xs:string" name="tickerSymbols">

 <urn:label xml:lang="en">

 <urn:value>Ticker Symbols</urn:value>

 </urn:label>

 </urn:propertyDescriptions>

 <urn:propertyDescriptions type="xs:string" name="refreshInterval">

 <urn:label xml:lang="en">

 <urn:value>Refresh Interval</urn:value>

 </urn:label>

 </urn:propertyDescriptions>

 </urn:modelDescription>

</urn:getPortletPropertyDescriptionResponse>
Message 20: Portlet Property Description Response

This description indicates the description of the two properties associated with the portfolioManager portlet. Each property description also indicates the schema type of the property. In this specific scenario, both properties are of type XML schema type “string”. The type helps the Consumer in preparing a user interface for entering values for the properties.

In addition to the type, a Producer may optionally supply a label and a hint. In the above message, labels provide a short description of each property.
Now consider the following scenario.

C Inc can use this description to design, for example, a HTML form with two text fields for displaying and updating tickerSymbols and refreshInterval properties.
A user of C Inc would like to update the tickerSymbols and and the refreshInterval using the page setup by C Inc.

C Inc sends a getPortpetProperties request to P Inc to obtain the current values of the properties. C Inc uses the returned property values to display a form filled with the current values.

User enters new values for the properties, and submits the form. C Inc sends a setPortletProperties request to P Inc to update the values of the properties.

Scenario 6: Setting Portlet Properties

In this scenario, note that the portlet with handle portfolioManager is a producer offered portlet. A producer offered portlet is one that is offered in the service description response with the same portlet handle. It is very likely that several Consumers and users share the same producer offered portlets. Any persistent state changes made to a producer offered portlet would therefore be shared by all its usages. In our scenario, since the properties associated with the portfolioManager portlet are specific to each user, P Inc cannot directly update the properties for the portfolioManager portlet. Instead, P Inc first clones the portlet, and associates the new property values with the cloned portlet.
This sequence of interactions is shown in Figure XXX.

[image: image6.wmf]Consumer

Get Portlet Properties (original portlet context)

Portlet Properties

Producer

Get portlet properties

Update portlet

properties

Clones the portlet

Set Portlet Properties (original cortlet context)

New portlet context

Figure 3: Setting Portlet Properties With Implicit Cloning

The messages are as follows.
C Inc sends the following message to get the current (the default) values of properties associated with the portfolioManager portlet.

<urn:getPortletProperties

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 <urn:names xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</urn:getPortletProperties>
Message 21: Get Portlet Properties Request
In this request, the value of the portlet handle is the same that of the portfolio manager portlet offered in the service description of P Inc. Also note the names element in this request. When this element is set “nil”, this request implies that the Producer must return values for all properties associated with the portlet. In case the Consumer is interested only in the values of certain properties, the Consumer may specify the names for which it needs values. In the following request, C Inc specifies the tickerSymbols property.

<urn:getPortletProperties

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/

 <urn:names>tickerSymbols</urn:names>

</urn:getPortletProperties>

Message 22: Get Portlet Properties Request (For Specific Properties)
The default value of the tickerSymbols property is “AMZN” and the default value of the refreshInterval field is 180 seconds. For the request in Message 21 (Subbu: Use field here), P Inc returns the following response with these values.

<urn:getPortletPropertiesResponse
 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:properties name="tickerSymbols">

 <urn:stringValue>AMZN</urn:stringValue>

 </urn:properties>

 <urn:properties name="refreshInterval">

 <urn:stringValue>180</urn:stringValue>

 </urn:properties>

</urn:getPortletPropertiesResponse>

Message 23: Get Portlet Properties Response
C Inc can now display an HTML form with the current values filled in. After the user updates the form with new values (say, “AMZN, YHOO” for the tickerSymbol property and “60” secs for the refreshInterval property), C Inc sends the following request to P Inc.

<urn:setPortletProperties

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 <urn:propertyList>

 <urn:properties name="tickerSymbols">

 <urn:stringValue>AMZN, YHOO</urn:stringValue>

 </urn:properties>

 <urn:properties name="refreshInterval">

 <urn:stringValue>60</urn:stringValue>

 </urn:properties>

 </urn:propertyList>

</urn:setPortletProperties>
Message 24: Set Portlet Properties Request

Since the portlet handle “portfolioManager” is producer-offered, P Inc implicitly clones the portlet before updating the properties. P Inc returns the updated portlet handle in its response, as shown below.

<urn:setPortletPropertiesResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:portletHandle>portfolioManager.1</urn:portletHandle>

</urn:setPortletPropertiesResponse>
Message 25: Set Portlet Properties Response

This response includes the handle of the cloned portlet “portfolioManager.1”. To associate the customized properties to the user, C Inc must use the cloned portlet handle instead of the original handle in subsequent requests made to P Inc for that user. P Inc may not clone the portlet on subsequent requests to set portlet properties.
If the Producer is unable to persistently update portlet properties, the Producer may serialize updated properties and return those as portletState in the setPortletPropertiesResponse.
When a Consumer receives such portletState during implicit/explicit cloning, the Consumer is required to supply the same with PortletContext in all future invocations for that portlet.
In the above scenario, P Inc cloned the portlet implicitly when C Inc attempted to update properties of a producer offered portlet. Instead, C Inc may first request P Inc to clone the portlet, and then set the properties.

Consider the following scenario that sets portlet properties after explicitly cloning the portlet.

A user requests C Inc to setup a page to access the portfolioManager portlet. C Inc sends a clonePortlet request to P Inc to clone the portlet.
The user subsequently follows Scenario 1 to customize the portfolioManager portlet.
Scenario 7: Setting Properties with Explicit Cloning

The following sequence shows the sequence of interactions for setting portlet properties with explicit cloning.

[image: image7.wmf]Consumer

Clone portlet (original portlet context)

New Portlet Context

Producer

Portal admin creates a new

portal page for a user

Clones the portlet

Get Portlet Properties (new portlet context)

Portlet Properties

Get portlet properties

Update portlet

properties

Set Portlet Properties (new portlet context)

Same Portlet Context

Figure 4: Setting Portlet Properties With Explicit Cloning
C Inc sends the following request to clone the portfolioManager portlet.
<urn:clonePortlet xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</urn:clonePortlet>
Message 26: Clone Portlet Request

P Inc creates a clone of the portfolioManager portlet, and returns the following response with a new portlet handle.

<urn:clonePortletResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:portletHandle>portfolioManager.1</urn:portletHandle>

</urn:clonePortletResponse>
Message 27: Clone Portlet Response

The returned portlet handle is associated with a consumer created portlet, created by explicitly cloning a producer offered portlet.

C Inc now uses the new portlet handle during all subsequent requests for the portfolioManager portlet for that user. Note that C Inc may also use the new portlet handle while calling getPortletDescription to get a description of the portlet.
In the above scenarios, portlets are cloned to associate customizations of portlet properties. In order to associate such customizations with cloned portlets, the Producer may have to manage some persistent state for the duration of the usage of that customization. Once the Consumer determines that a given customization is no longer in use, the Consumer may request the Producer to destroy the portlet.

The destroyPortlets operation can be used to destroy one more consumer created portlets. Consider the following scenario.

A user requests C Inc to terminate his user account with C Inc. Since that user’s customizations are no longer required, C Inc sends a request P Inc to destroy portlets cloned for that user.
Scenario 8: Destroy Portlets
In order to destroy portlets, C Inc sends the following request to P Inc.

<urn:destroyPortlets xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletHandles>portfolioManager.</urn:portletHandles>

</urn:destroyPortlets>
Scenario 9: Destroy Portlets Request

Note that C Inc may send more than one portlet handles in this request, so that several portlets can be destroyed in a single request.
Upon verifying that the portlet handle refers to a consumer created portlet, P Inc may delete any customizations associated with each portlet being destroyed, and return the following response.

<urn:destroyPortletsResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>
Message 28: Destroy Portlets Response
However, if the Consumer attempts to destroy a producer offered portlet, or if the Producer fails to destroy a portlet due to some internal failure, the Producer may include the portlets that it failed to destroy and a reason for the failure in the destroyPortletsResponse. The following message shows the response from P Inc when C Inc attempts to destroy the producer offered portlet with handle portfolioManager.
<urn:destroyPortletsResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:destroyFailed>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 <urn:reason>Producer offered portlet. Can't be destroyed</urn:reason>

 </urn:destroyFailed>

</urn:destroyPortletsResponse>
Message 29: Destroy Portlets Response When Failed

This response indicates the P Inc failed to destroy the producer offered portlet with handle portfolioManager.
After a consumer created portlet has been destroyed, the Consumer can no longer use the portlet with that handle.
 The following sequence illustrates a Consumer aggregating cloned portlets for several users, and destroying the cloned portlets when such portlets are no longer required.

[image: image8.wmf]Consumer

Clone portlet (original Portlet Context)

New Portlet Context

Producer

Portal admin creates a new

portal page for a user

Clones the portlet

Clone portlet (original Portlet Context)

New Portlet Context

Portal admin creates a new

portal page for another user

Clones the portlet

Subsequent calls to Producer with

new Portlet Context

Destroy portlet (Cloned Portlet Context)

Deleted

Portal admin removes the portal

page for the first user

Deletes the portlet

Destroy portlet (Cloned Portlet Context)

Deleted

Portal admin removes the portal

page for the second user

Deletes the portlet

Figure 5: Cloning and Destroy for Managing Portlet Customizations

9.2 Faults

Consumers invoking operations on the portlet management interface must be prepared to handle the following faults:

a. AccessDenied: A Producer throws this fault when the it is unable to process a given request due to internal security violations.

b. InvalidUserCategory: TODO

c. InconsistentParameters: A Producer throws this fault when the request data is not conistent. [Not clear enough]
d. InvalidRegistration: A producer throws this fault when the registration data supplied by the consumer is not valid. As we shall see in the next section, Producers requiring registration require that the Consumer supply valid registration data in all invocations.

e. MissingParameters: A Producer throws this fault when any required data is missing [Not in the xsd sense – clarify]

f. OperationFailed: A producer throws this fault when it fails to process the getServiceDescription operation.
g. InvalidHandle – A Producer throws this fault when any supplied handle is not valid. For example, a Producer throws this fault the supplied protletHandle is no longer valid.
10 Use Profiles

The Use Profile describes at a high level the basic functionality of a Producer or Consumer implementation. These are to be regarded as merely a general guideline. Implementers will likely compose their implementation by selecting from a “palette” of functionality, and later sections of this primer lay out these use profiles across several functional axes.

An implementation can therefore be said to conform across potentially several different functional areas, offering advanced features in some areas while remaining “simple” or even “base” in others.

10.1 Producer Levels

10.1.1 Base

· Implements only the MUST interfaces

· No state (session or persistent); uses opaque mechanism to send state back to Consumer

· No cloning

· No initialization required

· Does not rewrite URLs in markup

· Does not require registration

10.1.2 Simple

· May request initialization; could store state in cookies

· Supports cloning

· May require registration (out-of-band).

· Session state; creates and sends session handles to the Consumer

10.1.3 Complex

· May rewrite URLs (requires Consumer templates)

· May offer both in-band and out-of- band registration

· Persistent local state

· May support grouping of portlets

· Cache validation

10.2 Consumer Levels

10.2.1 Base

· Implements only the MUST interfaces

· VIEW mode, NORMAL window state only

· Supplies no user information (portlet may fault or degrade functionality in response).

· Rewrites URLs

· Initializes the Producer if required (initCookie)

· Handles Producer cookies

· Limited markup types (e.g. html)

· Does not clone (“readOnly”; may limit functionality of portlets that offer personalization)

· No in-band registration

10.2.2 Simple

· Support for standard modes and window states

· Support for in-band registration

· Supplies basic user information (e.g., identity and authorization type)

· Caching according to Producer-supplied cache control.

· May explicitly clone portlets.

· Handles implicit clones (“cloneBeforeWrite”).

10.2.3 Complex

· May supply URL rewrite templates to a Producer that is capable of rewriting URLs in portlet markup.

· Multiple markup types (e.g. html and wml)

· Complex user management, willing to supply standard/extended user attributes May support custom window states and/or modes.

· Multiple levels of user access (user categories)

· Localization

· May use explicit property-setting mechanism; create custom UI for property management.

11 Basic Topics/Issues

11.1 Markup

OperationFailed semantics

Reference portlet style guide?

11.2 Caching

11.3 Persistence

Opaque state

Cloning, including semantics for hasUserSpecificState

11.4 Statefulness

Cookie

Navigational

Session

11.5 Modes/Window States

Carry JSR 168-specific modes

11.6 URL Rewriting

12 Advanced Topics/Issues

12.1 User Profile and personalization

Unauthenticated (“guest”) access

userContextKey == UserCategory, for conveying common attributes for a class of users

12.2 Localization and Internationalization

12.3 Security

SSL (Client)

HTTP Digest

SAML/XACML (not for 1.0)

12.4 Extensions

Why? When? etc.

12.5 Carrying custom modes

JSR 168

12.6 Multipart upload

Producer must be prepared to reconstruct the input from a varietly of representations (single UploadContext, multiple UploadContexts)

Minimal required attributes/headers?

6

wsrp-primer-1.0
wsrp-primer-1.0

_1128401075.vsd

_1128918968.vsd

_1130142551.vsd

_1130161721.vsd

_1130142502.vsd

_1128401114.vsd

_1128090756.vsd

