Web Services for Remote Portlets 1.0 Primer
Version 0.45

15 March 2004

[image: image1.png]OASIS

Web Services for Remote Portlets 1.0 Primer

Draft 0.45, 15 March 2004

Document identifier:

wsrp-primer-1.0 (Word)

Location:

http://www.oasis-open.org/committees/wsrp
Editors:

Subbu Allamaraju, BEA Systems <subbu@bea.com>

Rex Brooks, Starbourne Communications <rexb@starbourne.com>

Contributors:

Gil Tayar, WebCollage <Gil.Tayar@webcollage.com>

Alan Kropp, Vignette Corporation <akropp@vignette.com>
Abstract:

This is the WSRP 1.0 primer. The purpose of this document is to provide a detailed explication of the main concepts contained in the WSRP 1.0 specification. In that sense, this is a companion document to the specification. Although this primer is not normative, its tutorial approach is intended as a guide for implementers and other technical readers. This document explains the abstractions of the specification in a “real-world” perspective based on a step by step approach representing practical use case scenarios.

Status:

This version is a draft of the non-normative WSRP 1.0 primer. Comments about points needing clarification are much appreciated and may be emailed to wsrp-primer@lists.oasis-open.org.

If you are on wsrp@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to wsrp-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to wsrp-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright © 2003 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

31
Introduction

31.1
Standard remote content protocol

31.2
Promote rigorous portlet implementations

31.3
Framework for sophisticated scenarios

31.4
Using common WS-related standards

42
Concepts

42.1
Producers and Consumers

42.2
Producer-Consumer-User Interaction

42.2.1
Modes and States

42.2.2
Markup Generation

43
Basic Scenario

64
Service Description Interface

64.1
Description

74.2
Message Format

84.3
Faults

85
Registration Interface

85.1
Description

95.2
Message Format

145.3
Faults

156
Markup Interface

156.1
Description

156.2
Purposes Served

166.3
Message Format

216.4
Interaction Operations

246.5
Modes and States

256.6
User Categories

256.7
Faults

267
Portlet Management Interface

277.1
Message Format

277.1.1
getPortletDescription

357.2
Faults

358
Use Profiles

368.1
Producer Levels

368.1.1
Base

368.1.2
Simple

368.1.3
Complex

368.2
Consumer Levels

368.2.1
Base

368.2.2
Simple

378.2.3
Complex

379
Basic Topics/Issues

379.1
Markup

379.2
Caching

389.3
Persistence

389.4
Statefulness

399.5
Modes/Window States

399.6
URL Rewriting

399.7

3910
Advanced Topics/Issues

3910.1
User Profile and personalization

4010.2
Localization and Internationalization

4010.3
Security

4010.4
Extensions

4010.5
Carrying custom modes

4010.6
Multipart upload

1
Introduction

There are numerous sources of high-level introductory information about WSRP 1.0, including the introductory section of the specification itself, and the WSRP White Paper [link]. The first-time reader is encouraged to explore these resources, before proceeding with the extended examples and explanations contained here.

The guiding perspective on which this specification was built should be of primary interest to potential implementers. This perspective is framed by the question of what problems WSRP is intended to solve. The specification’s procedural approach to solving these questions can be divided into a few main areas:

1.1 Standard Remote Content Protocol

A standard remote content protocol replaces many proprietary, product-specific solutions. This benefits all parties, Consumers (i.e. portals) and portlet developers alike.

1.2 Promote rigorous portlet implementations

WSRP raises the bar of conformance for this standard in many respects for what constitutes a “good or effective” portlet implementation. The specification makes specific recommendations regarding markup fragment rules, representing statefulness, ensuring security, etc., with an eye toward maximizing the usefulness and integrity of portlet services. This is not to suggest that WSRP mandates a “one size fits all” approach.

1.3 Framework for sophisticated scenarios

WSRP 1.0 is the foundation on which increasingly sophisticated implementations are to be specified. These include the ability for Consumers to customize a portlet’s content, and to create application process flows that coordinate the activities of multiple portlets, from multiple Producers.

1.4 Using common WS-related standards

The plethora of standards and technologies that have relevance to the web services world presents a daunting and growing challenge to implementers, in terms of what to select and how to design a solution. Many of these end up as one-off, proprietary solutions of limited scope, with a limited shelf life. WSRP provides an integrated framework of existing and emerging standards and technologies based on sound criteria developed through a rigorous process.

WSRP builds on a few fundamental standards, most notably XML and SOAP, while allowing for the implementation of evolving standards, to deliver a protocol rich in abstractions and operations that web service implementers and Consumers require.

2 Concepts

2.1 Producers and Consumers

The WSRP specification uses the terms Producer and Consumer to describe parties implementing the specification.

The Producer is a web service offering one or more portlets and implementing various WSRP interfaces/operations. Depending on the implementation, a producer may offer just one portlet, or may provide a runtime (or a container) for deploying and managing several portlets.

The Consumer is a web service client that invokes producer offered WSRP web services and provides an environment for users to interact with portlets offered by one or more such producers.

The nearly limitless variety of Producers and Consumers have been kept in mind in the development of WSRP, but for the purposes of a useful primer, we use necessarily simple examples, It is not our intention to address all such categories nor to replace the material in the specification which covers a wider range than a primer should. So, when you uncover your own questions, and discover that any particular question is not covered here, it is suggested that you have a copy of the specification available for quick reference.

TODO: Refer to use profiles section.

2.2 Producer-Consumer-User Interaction

[Editorial Note: Refer to #1.2 in spec to describe how these terms are modeled as “Actors” in the process of producing “User-Facing” presentation.]

2.2.1 Modes and States

[Editorial Note: Just refer to #6.8 & # 6.9 in the spec? Do we need to talk about it in the primer? Rex thinks so-basic stage-setting for Basic Scenario. And some discussion in Markup Interface Section.]

2.2.2 Markup Generation

[Editorial Note: Refer to #4.2 in spec to introduce the concept that the end product of WSRP is the Portlet rendered in client browser page]

3 Basic Scenario

[Editorial Note: The following description uses P Inc and C Inc for Producer and Consumer.

P Inc is a financial services company, providing services online to their customers and partners. C Inc is on online portal company, providing personalized collaboration, banking, and financial services. C Inc offers these services to end-users by subscription.

P Inc would like to host a web based portfolio management application. C Inc would like to offer this application to its end users via its portal pages.

In order to offer this portfolio management application to end users, C Inc and P Inc agree on the following:

(a) P Inc makes some metadata of the portfolio management application available to C Inc. C Inc. uses this metadata to prepare a page that users can use to manage their portfolios.

(b) A user of C Inc, U visits C Inc’s web site, and clicks on a link to portfolio management application.

(c) C Inc then sends a request to P Inc to get the initial view of the portfolio management application. P Inc then responds by transmitting markup (as HTML) that represents the first page of the application.

(d) C Inc then processes the returned markup and prepares it for aggregation. If the returned markup has links and forms, C Inc transforms the markup such that such links and forms, when activated return to C Inc.

(e) C Inc aggregates the markup into a page, and writes it into the response of the browser’s connection. The aggregated page is then transmitted to U.

(f) U reviews the page. U finds a form to submit a new stock symbol. U fills in the ticker symbol of a stock and other details, and submits the form.

(g) C Inc receives the request containing the form data submitted by U. Upon determining that this request is meant for the portfolio management application, C Inc sends another request to P Inc to process the user interaction.

(h) P Inc processes the user interaction request and adds the sticker symbol to U’s portfolio.

(i) C Inc then sends a request to get the changed markup based on the current state of the portfolio. P Inc generates markup and returns.

(j) C Inc then repeats steps (d) and (e).

(k) U receives a new page containing the updated portfolio.

This scenario captures some of the essentials of the WSRP specifications. Instead of developing a proprietary application protocol to accomplish the above steps, P Inc and C Inc can agree to use WSRP as the protocol. In this scenario, P Inc is a WSRP Producer offering portlets, and C Inc is a WSRP Consumer consuming portlets and aggregating portlets for users to access aggregated portlet pages. The portfolio management application is a Portlet offered by the Producer.

To implement this scenario, P Inc and C Inc can use WSRP to define various interactions, with P Inc implementing the following WSRP interfaces and operations:

(l) Service Description Interface: P Inc implements this interface to provide a metadata of itself and the list of portlets it offers. C Inc invokes the getServiceDescription() operation of this interface to obtain this metadata in step (a) of the above scenario.

(m) Markup Interface: To generate markup and to process interaction requests, P Inc implements the Markup Interface specified by WSRP. C Inc invokes the getMarkup() operation of this interface to obtain the portlet’s markup, and invokes the performBlockingInteraction() operation to propagate U’s interactions to P Inc.

By implementing these interfaces, and agreeing to conform to WSRP, both P Inc and C Inc can use a standard mechanism to offer and consume portlets. In addition, P Inc can offer the same portlet to X Inc as long as X Inc adheres to WSRP, and C Inc can consume porStlets offered by Y Inc provided it implements WSRP interfaces.

The Service Description and Markup interfaces are the two required interfaces that must be implemented by any WSRP Producer. In addition to these two, WSRP specifies the following interfaces:

Registration Interface: Registration interface allows a Consumer to register with a Producer and let the Producer customize its behavior for each Consumer based on the registration information.

Portlet Management Interface: The Portlet Management interface allows Consumers to clone/destroy portlets, and also customize portlets by changing any associated properties.

In the following sections, we will discuss these interfaces in detail by considering each aspect of the above scenario.

The normative WSDL of all WSRP Interface data structures can be found in Section 14 referencing at http://www.oasis-open.org/committees/wsrp/specifications/version1/wsrp_v1_interfaces.wsdl. Various data types used in the following sections are defined at http://www.oasis-open.org/committees/wsrp/specifications/version1/wsrp_v1_types.xsd. Readers are encouraged to refer to these documents for more complete descriptions of various messages presented in the following sections.

4 Service Description Interface

4.1
Description

In order to set up a consumer to aggregate portlets offered by a producer, the consumer must first obtain a description of the producer, and the list of portlets offered by the producer. Based this information, the consumer will be able determine if it can successfully aggregate portlets offered by a producer, and setup its environment (for example, a page aggregating portlets) for such aggregation.

The getServiceDescription() operation of the Service Description Interface serves the purpose of identifying portlets and their properties.

[image: image2.wmf]Consumer

Get service description

Metadata + Offered Portlets

Producer

Figure 1: Service Description

All portlet producers are required to implement this operation. This operation returns the following:

Producer Capabilities: Describe the capabilities of the producer. This information helps in setting up a consumer to interact with the producer. Among other things, the response of this operation indicates to the consumer whether the producer requires registration to access its portlets, whether the consumer must explicitly initialize cookies for all markup related operations, the locales supported by the producer etc.

Offered Portlets: The response of this operation also includes a list of portlets that are offered by the producer, and their metadata. The portlet metadata includes a unique handle, modes, window states, and content types supported by the portlet, in addition to a description of the portlet. In this sense, the producer acts as a portlet repository that the consumer must look up for discovering portlets.

4.2 Message Format

Scenario: C Inc would like to discover the capabilities of P Inc, and the list of portlets offered by P Inc.

Scenario 1: Discover Portlets

C Inc sends a SOAP message with the following request document in the body of the message to P Inc.:

<urn:getServiceDescription

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</urn:getServiceDescription>

Message 1 Service Description Request

This is the most basic form of a serviceDescription request that a consumer could send to a producer. To this request, the producer sends a getServiceDescriptionResponse document that includes its capabilities and offered portlets. Here is an example of a typical response:

<urn:getServiceDescriptionResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>false</urn:requiresRegistration>

 <urn:offeredPortlets>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 <urn:markupTypes>

 <urn:mimeType>text/html</urn:mimeType>

 <urn:modes>wsrp:view</urn:modes>

 <urn:windowStates>wsrp:normal</urn:windowStates>

 <urn:windowStates>wsrp:minimized</urn:windowStates>

 <urn:windowStates>wsrp:maximized</urn:windowStates>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

 </urn:markupTypes>

 <urn:description xml:lang="en">

 <urn:value>Manages portfolios</urn:value>

 </urn:description>

 <urn:title xml:lang="en">

 <urn:value>Manage Your Portfolios</urn:value>

 </urn:title>

 </urn:offeredPortlets>

 <urn:requiresInitCookie>none</urn:requiresInitCookie>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

</urn:getServiceDescriptionResponse>

Message 2: Service Description Response

Note the following from this response:

Registration: The producer does not require registration to invoke other WSRP operations.

Cookies: The consumer is not required to initialize and manage cookies.

Locales: The producer supports “en” and “en-US” locales. This does not necessarily mean that portlets offered by this producer are limited to generating markup in these locales.

Portlets: The producer offers a single portlet, uniquely identified by a protletHandle “portfolioManager”. The portletHandle is an opaque reference assigned by the producer, and both the consumer and the producer use this handle to refer to this portlet in all interactions. The producer and/or consumer may also associate data (such as properties) with this handle.

The portfolioManager portlet returns content of MIME type “text/html”. As with locales, note that portlets on this producer are not limited to generating markup in this MIME type.

This portlet could be rendered in the “wsrp:view” mode, and “wsrp:normal”, “wsrp:minimized”, and “wsrp:maximized” window states.

The description of the portfolioManager portlet also includes a description and a title. The Consumer may use these values for describing or presenting this portlet to its end users. For example, the Consumer may provide a title bar that includes the title and buttons for changing modes and window states.

4.3 Faults

A consumer invoking the getServiceDescription operation must be prepared to handle the following faults:

InvalidRegistration: A producer throws this fault when the registration data supplied by the consumer is not valid. As we shall see in the next section, Producers requiring registration require that the Consumer supply valid registration data in all invocations. However, since a Consumer uses the serviceDescriptionResponse to see if a producer requires registration, it may not supply the registration data with the getServiceDescription request. But when supplied, such registration data must be valid.

OperationFailed: A producer throws this fault when it fails to process the getServiceDescription operation. In general, Consumers must be prepared to receive this fault on any WSRP invocation.
Results and Recommendations
Service Descriptions can be relatively simple or complex, but the relationship between Producers, represented in our examples by P Inc and Consumers, represented by C Inc is presumed to be ongoing. Since these transactions and exchanges are likewise presumed to be repeating, a way to reduce the number of these transactions for the purpose of efficiency and reliability is needed. Thus, the Registration Interface was devised to accomplish this purpose.
So a way to establish a lasting relationship at the outset was sought. To do this, the committee considered the various means that could be made available, and determined that the specification should evolve as the means to conduct registrations effectively evolves. Thus a Registration Interface requirement was established.
5 Registration Interface

5.1

Description

The purpose of the registration interface is to allow a consumer to register with a producer. Registration allows the Producer to associate portlets and any portlet customization data with the consumer that is interacting with it. This mechanism was sought because a standard way to establish an ongoing relationship was needed for a variety of reasons in addition to reducing overhead for repeating transactions and exchanges….
According to the requirement established it was determined that Registration could be accomplished two ways: the in-band and out-of-band methods at the time of producing the specification. A corollary requirement presumes that future versions will likewise develop in tandem with existing capacities.
For in-band registration, the Registration Interface was developed, and it was also determined that for the next version technical notes for using UDDI and ebXML registries would be developed as appropriate.

For out-of-band registration…

The Producer can also use the registration context to customize its responses for each Consumer. Note that registration is not a means of uniquely identifying a Consumer.

The registration interface specifies the following operations:

register(): To let a consumer register with a Producer. The Consumer may have to supply certain producer-specified registration properties for registration. Upon registration, the Producer assigns a unique RegistrationContext for the Consumer. The Consumer must then supply this RegistrationContext with each request it makes to the Producer.

ModifyRegistration(): To let a Consumer modify an existing registration. The Consumer may supply registration properties. The Producer may assign a new RegistrationContext to the Consumer.

deregister(): To let the Consumer terminate a registration.

The WSRP specification does not specify/restrict any possible application of registration. In reality, WSRP alone cannot dictate how a Consumer enters into a relationship with a Producer. Such a relationship may often involve legal and contractual obligations between a Producer and a Consumer. However, once such obligations are met, a Producer may use registration to tailor its behavior for each Consumer. Here are some possible applications:

· Keep track of portlets used by each Consumer, by associating portlet customizations with consumer

· Tailor the list of portlets offered to each Consumer, such that the Producer may offer a separate set of portlets for each Consumer.

· A Producer may offer/deny certain capabilities (such as the ability to clone portlets) for a given Consumer based on the registration context.

A Producer indicates that registration is required and that certain data is required for registration via its response to a getServiceDescription() request.

5.2 Message Format

P Inc requires that only registered Consumers can use any of its offered portlets. P Inc also requires a service agreement and certain contractual obligations prior to registration,

C Inc enters into a service agreement with P Inc and fulfills all the necessary obligations. P Inc then issues a service ID and requires that C Inc supply C Inc’s DUNS number and the service ID for registration. Note that these transactions happen outside the scope of WSRP.

C Inc then registers with P Inc by supplying its DUNS number and the service ID.

Scenario 2: Registration

Since P Inc now requires registration, P Inc sends the following response to a getServiceDescription request from C Inc.

<urn:getServiceDescriptionResponse

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>true</urn:requiresRegistration>

 <urn:registrationPropertyDescription>

 <urn:propertyDescriptions type="xs:string" name="dunsNum">

 <urn:label xml:lang="en">

 <urn:value>DUNS Number</urn:value>

 </urn:label>

 </urn:propertyDescriptions>

 <urn:propertyDescriptions type="xs:string" name="serviceId">

 <urn:label xml:lang="en">

 <urn:value>Service ID</urn:value>

 </urn:label>

 </urn:propertyDescriptions>

 </urn:registrationPropertyDescription>

</urn:getServiceDescriptionResponse>

Message 3: Service Description Response (requiring registration)

The first point to note from this response is that this producer requires registration, and that the producer requires two registration properties to be supplied for registration. Beyond this, this service description response does not provide much information to the consumer. Specifically, P Inc chose to not include portlet metadata in its response.

C Inc then sends the following register request to P Inc supplying the DUNS number and service ID that was previously assigned to it by P Inc.

<urn:register xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:consumerName>C Inc</urn:consumerName>

 <urn:consumerAgent>C Inc Portal</urn:consumerAgent>

 <urn:methodGetSupported>false</urn:methodGetSupported>

 <urn:registrationProperties xml:lang="en" name="dunsNum">

 <urn:stringValue>123456</urn:stringValue>

 </urn:registrationProperties>

 <urn:registrationProperties xml:lang="en" name="serviceId">

 <urn:stringValue>abcde</urn:stringValue>

 </urn:registrationProperties>

 </urn:register>

Message 4: Registration Request

In addition to the registration properties, the consumer sends some additional properties of the consumer itself:

Consumer name: Name of the consumer

Consumer agent: Name and version of the consumer

Method GET support: A boolean to indicate if the consumer can aggregate markup containing forms with method GET.

The Producer P Inc validates this request for registration, creates a registration context, and returns the following response:

<urn:registerResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationHandle>123.456</urn:registrationHandle>

</urn:registerResponse>

Message 5: Registration Response

In this response, the registrationContext represents a registration relationship between the P Inc and C Inc, and contains a registrationHandle assigned to C Inc by P Inc. Once a Consumer obtains a registrationContext, the consumer must supply the registrationContext with all subsequent requests to the Producer. For this reasons, the Consumer must persistently maintain the registrationContext for all future invocations.

If the Producer is capable of managing persistent storage of registration data, the Producer may create a registrationHandle and return the same in the registrationContext as shown above.

However, if the Producer is not capable of managing persistent storage of registration data, the Producer may choose to send the result of registration as registrationState to the Consumer.

C Inc then sends another service description request to P Inc, this time supplying the registrationContext.

<urn:getServiceDescription

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

</urn:getServiceDescription>

Message 6: Service Description Request (with registration)

Upon validating the registrationContext, P Inc now sends a response that includes portlets it offers.

<urn:getServiceDescriptionResponse

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>true</urn:requiresRegistration>

 <urn:offeredPortlets>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 <urn:markupTypes>

 <urn:mimeType>text/html</urn:mimeType>

 <urn:modes>wsrp:view</urn:modes>

 <urn:windowStates>wsrp:normal</urn:windowStates>

 <urn:windowStates>wsrp:minimized</urn:windowStates>

 <urn:windowStates>wsrp:maximized</urn:windowStates>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

 </urn:markupTypes>

 <urn:description xml:lang="en">

 <urn:value>Manages portfolios</urn:value>

 </urn:description>

 <urn:title xml:lang="en">

 <urn:value>Manage Your Portfolios</urn:value>

 </urn:title>

 </urn:offeredPortlets>

 <urn:requiresInitCookie>none</urn:requiresInitCookie>

 <urn:registrationPropertyDescription>

 <urn:propertyDescriptions type="xs:string" name="dunsNum">

 <urn:label xml:lang="en">

 <urn:value>DUNS Number</urn:value>

 </urn:label>

 </urn:propertyDescriptions>

 <urn:propertyDescriptions type="xs:string" name="serviceId">

 <urn:label xml:lang="en">

 <urn:value>Service ID</urn:value>

 </urn:label>

 </urn:propertyDescriptions>

 </urn:registrationPropertyDescription>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

</urn:getServiceDescriptionResponse>

Message 7: Service Description Response (with registration)

Note that this message is similar to the response shown in Message 2.

P Inc revises its terms for service, and enters into a new service agreement with C Inc. In this process, it updates the service ID, effectively invalidating the current registration context for C Inc.

C Inc subsequently receives InvalidRegistration faults for various requests to C Inc.

C Inc now must modify the registration relationship to continue to use P Inc’s portlets.

Scenario 3: Modify Registration

Upon entering into a new service agreement and obtaining a new service ID, C Inc sends the following modifyRegistration() request to P Inc.

<urn:modifyRegistration xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:registrationData>

 <urn:consumerName>C Inc</urn:consumerName>

 <urn:consumerAgent>C Inc Portal</urn:consumerAgent>

 <urn:methodGetSupported>false</urn:methodGetSupported>

 <urn:registrationProperties xml:lang="en" name="dunsNum">

 <urn:stringValue>CIncDuncNumber</urn:stringValue>

 </urn:registrationProperties>

 <urn:registrationProperties xml:lang="en" name="serviceId">

 <urn:stringValue>CIncServiceID</urn:stringValue>

 </urn:registrationProperties>

 </urn:registrationData>

</urn:modifyRegistration>

Message 8: Request to Modify Registration

This request is similar to the registration request in Message 4 except for a new value for a registration property.

P Inc validates the new values for registration properties, performs registration, and responds with the following message:

<urn:modifyRegistrationResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>

Message 9: Modify Registration Response

The response simply indicates that the request for modification of registration has been accepted.

If the Producer is not capable of managing persistent storage of the registration data, the Producer may return the updated registration state as registrationState in the modifyRegistrationResponse.

After modifying a registration relationship, C Inc can continue to use the new registrationHandle as it has now been reregistered with P Inc.

P Inc and C Inc decide to terminate the registration relationship, and C Inc no longer wants to host P Inc’s portlets.

Scenario 4: Deregistration

In order to terminate the registration relationship, C Inc sends a deregister() request with its registrationHandle to P Inc as shown below.

<urn:deregister xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

</urn:deregister>

Message 10: Deregister Request

P Inc then deregisters the consumer and may clean up any resources/state created (including any cloned portlets) for C Inc, and returns the following response.

<urn:deregisterResponse xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>

Message 11: Deregister Response

After this step, C Inc can no longer use the registrationHandle for its requests to P Inc.

Figure X shows a possible sequence of interactions between C Inc and P Inc for registration.

[image: image3.wmf]Consumer

Get Service Description as an anonymous consumer

Metada + Offered Portlets

Producer

Metadata indicates that registration is required,

and certain data is required for registration

Register (with registration properties)

Registration Context (uniquely identifies a consumer)

Get Service Description (as a registered consumer)

Metada + Offered Portlets

Validate registration

properties and register

Modify registration (with registration properties)

Updated Registration

Subsequent calls to Producer with the

Registration Context

Subsequent calls to Producer with the

Registration Context

Deregister

Validate registration

properties and update

registration

Figure 2: Registration [Editorial Note: Better caption]

5.3 Faults

A consumer invoking operations on the registration interface must be prepared to handle the following faults:

MissingParameters: A Producer throws this fault when certain expected data is missing in a given request. For example, in our scenario, P Inc sends this fault when C Inc sends a registration request without the service ID or the DUNS number.

InvalidRegistration: A producer throws this fault when the registration data supplied by the consumer is not valid. In the scenarios discussed above, P Inc sends this fault when C Inc invokes P Inc without modifying the registration relationship after entering into a revised service agreement. P Inc also sends this fault if C Inc sends the registrationHandle after deregistration.

OperationFailed: A producer throws this fault when it fails to process any operation.

6 Markup Interface

6.1 Description

In order for a consumer to produce a viewable display of aggregated portlets offered by a producer, the consumer must first obtain the display information, the markup file or markup fragment, formatted in HTML or XHTML for a portlet from the producer. This pass-through of portlets offered by the producer with little or no change, until the user interacts with the features of the portlet is one of the primary benefits of using WSRP. The Markup Interface is required.

The normative WSDL of all WSRP Interface data structures can be found in Section 14 referencingt http://www.oasis-open.org/committees/wsrp/specifications/version1/wsrp_v1_interfaces.wsdl.

6.2 Purposes Served

The getMarkup() operation of the Markup Interface serves the purpose of providing the portlet’s display instructions and current values for the portlet’s properties. This constitutes the current state of the portlet requested. The first getMarkup() operation that invokes an instance of a portlet from a producer also constitutes the initiation of the session which will be represented by the sessionID provided by the Producer in the getMarkupResponse. All portlet producers are required to support this operation, which includes the following:

RegistrationContext: the registrationHandle which the Consumer uses to identify itself to the Producer.It may also include a base64Binary for registrationState and an array of any extensions the Producer provides.

PortletContext: the portletHandle which the Consumer uses to identify the portlet to the Producer. It may also include a base64Binary for portletState and an array of any extensions the Producers provides.

RuntimeContext: the userAuthetication the Consumer uses to identify the authentication that was done to authenticate the user. It may also include a portletInstanceKey, namespace prefix, templates, sessionID, and an array of any extensions the Producer provides.

UserContext: the userContextKey the Consumer uses to uniquely identify the UserContext. It may also include userCategories, a profile and any extensions the Producer provides.

MarkupParams: the boolean value for secureClientCommunication, an array for locales, an array for mimeTypes and the mode and window state. It may also include clientData, an array for navigationalState, an array for markupCharacterSets, a validateTag, an array for validNewModes, an array for validNewWindowStates and an array of any extensions the Producer provides.

The performBlockingInteraction() operation of the Markup Interface serves the purpose of changing the portlet’s display instructions and/or current values for the portlet’s properties. This constitutes a new current state of the portlet requested. During the operation, the Consumer must not begin generation of the aggregated page containing the portlet nor gather markup for other portlets on that page. This allows any Producer-mediated sharing with other portlets to proceed safely before any subsequent getMarkup() operations are allowed. Because there are significant consequences involved with this operation, it is suggested that the WSRP Specification Section 6.3.1 be read carefully.

6.3 Message Format

For example, a consumer sends a SOAP message with the following request document in the body of the message to the producer:

<urn:getMarkup

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

<portletContext>

<portletHandle>portfolioManager</portletHandle>

</portletContext>

<runtimeContext>

<userAuthentication>none</userAuthentication>

<userContext>

<userContextKey>54321</userContextKey>

</userContext>

<markupParams>

<secureClientCommunication>false</secureClientCommunication>

<locales>en</locales>

<mimeTypes>text/html</mimeTypes>

<mode>wsrp:view</mode>

<windowState>wsrp:normal</windowState>

</markupParams>

</urn:getMarkup>

Message 12 Markup Request (without registration)

This is a basic form of a getMarkup request that a consumer could send to a producer. To this request, the producer sends a getMarkupResponse document that includes MarkupContext which contains the markup for the portlet and may include SessionContext with a sessionID, a value for expires and an array of any extensions the Producer provides.

This request contains RegistrationContext, PortletContext, RuntimeContext, UserContext and MarkupParams in a minimal configuration.

Here is a sample response from a producer with a different set of capabilities and portlets

<urn:getMarkupResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:requiresRegistration>true</urn:requiresRegistration>

 <urn:requiresInitCookie>perGroup</urn:requiresInitCookie>

 <urn:locales>en</urn:locales>

 <urn:locales>en-US</urn:locales>

</urn:getMarkupResponse>
Message 13: Markup Response (without registration)

The first point to notice is that this producer requires registration. The service description may not provide much information to the consumer. Such a producer may provide a more useful description based on consumer registration. If registration requires additional data, the producer may provide registration properties that the consumer must supply values for.

The consumer may then register with the producer, and resend the getMarkup request with the registrationHandle returned by the producer upon registration.

Here is a sample getMarkup request with full registration and service description information for the portlet being requested.

<getMarkup

xmlns="urn:oasis:names:tc:wsrp:v1:types">

<registrationContext>

<registrationHandle>uri:Portlet6test.LZAFuOV9iM4EVeKVYnd</registrationHandle>

</registrationContext>

<portletContext>

<portletHandle>WSRP_Portlets:Portlet6</portletHandle>

</portletContext>

<runtimeContext>

<userAuthentication>wsrp:password</userAuthentication>

<portletInstanceKey>qGBYRXJVOtTQ6SMZtBWlapK4ihc%3d</portletInstanceKey>

<namespacePrefix>portlet0</namespacePrefix>

<templates>

<defaultTemplate>http://knowth/Portlet6/Page.aspx?vid=qGBYRXJVOtTQ6SMZtBWlapK4ihc%3d&amp;ut={wsrp-urlType}&amp;is={wsrp-interactionState}&amp;ns={wsrp-navigationalState}&amp;m={wsrp-mode}&amp;ws={wsrp-windowState}</defaultTemplate>

<resourceTemplate>http://knowth/Portlet6/Page.aspx?vid=qGBYRXJVOtTQ6SMZtBWlapK4ihc%3d&amp;wsrp-url={wsrp-url}&amp;rewrite={wsrp-requiresRewrite}</resourceTemplate>

<secureDefaultTemplate>https://knowth/Portlet6/Page.aspx?vid=qGBYRXJVOtTQ6SMZtBWlapK4ihc%3d&amp;ut={wsrp-urlType}&amp;is={wsrp-interactionState}&amp;ns={wsrp-navigationalState}&amp;m={wsrp-mode}&amp;ws={wsrp-windowState}</secureDefaultTemplate>

<secureResourceTemplate>https://knowth/Portlet6/Page..aspx?vid=qGBYRXJVOtTQ6SMZtBWlapK4ihc%3d&amp;wsrp-url={wsrp-url}&amp;rewrite={wsrp-requiresRewrite}</secureResourceTemplate>

</templates>

</runtimeContext>

<userContext>

<userContextKey>12345</userContextKey>

<profile>

<name>

<given>Joe</given>

<family>Primer</family>

</name>

</profile>

</userContext>

<markupParams>

<secureClientCommunication>false</secureClientCommunication>

<locales>en</locales>

<mimeTypes>text/html</mimeTypes>

<mode>wsrp:view</mode>

<windowState>wsrp:normal</windowState>

<clientData>

<userAgent>Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Q312461; (R1 1.1)</userAgent>

</clientData>

<markupCharacterSets>UTF-8</markupCharacterSets>

<markupCharacterSets>UTF-16</markupCharacterSets>

</markupParams>

</getMarkup>

Message 14: getMarkup Request (with registration)

Note the following from this request:

RegistrationContext:

The registrationHandle is

uri:Portlet6test.LZAFuOV9iM4EVeKVYnd

PortletContext:

The portletHandle is WSRP_Portlets:Portlet6
RuntimeContext:

The userAuthentication is password,

the portletInstanceKey is qGBYRXJVOtTQ6SMZtBWlapK4ihc%3d,

the namespacePrefix is
portlet0 and

the templates with their URLs are

defaultTemplate ,

resourceTemplate

secureDefaultTemplate and

secureResourceTemplate

d. UserContext:

The userContextKey is 12345.,

the userCategories are not used and

the profile contains a name with

Joe as the given value and

Primer as the family value.

e. MarkupParams:

the Boolean for secureClientCommunications is false,

the locales is en,

the mimeTypes is text/html,

the mode is wsrp:view and

the windowState is wsrp:normal.

Upon validating the registrationHandle, the producer may now send a getMarkupResponse that includes markupContext containing the actual markup for the portlet

<getMarkupResponse

xmlns="urn:oasis:names:tc:wsrp:v1:types">

<markupContext>

<mimeType>text/html</mimeType>

<markupString>

…

</markupString>

<locale>en</locale>

<preferredTitle>Cascading Style Sheet Example Portlet</preferredTitle>

</markupContext>

<sessionContext>

<sessionID>sid.e2++DxoNsrhmQ8l0fWpMg19s8DM=</sessionID>

<expires>-1</expires>

</sessionContext>

</getMarkupResponse>

Message 13: Markup Response (with registration)

When compared to the MarkupResponse shown in Message 13, this response shows certain additional requirements from the producer for the consumer:

Since this producer requires registration, the consumer is required to supply the registrationHandle with all its interactions with the producer.

The producer has indicated a preferredTitle Cascading Style Sheet Example Portlet which should be honored.

The producer has supplied a sessionID sid.e2++DxoNsrhmQ8l0fWpMg19s8DM= which must be used.

For the sake of brevity, let’s assume that the following markup fragment represents the markupString shown as ellipsis in Message 16 after it has been processed. Depending on how it is aggregated by the Consumer some amount of rewriting is necessary to make it ready for inclusion in the page where it will appear.

<div align="right">

 </div>

 <form id="primerRemote1_form" action=http://ada:7001/qaConsumer/primer/Primer.portal?_nfpb=true&_windowLabel=primerRemote1&wsrp-navigationalState=primerRemote1_goNext%3Dlogin&wsrp-urlType=blockingAction method="post">

<table width="100%"border="0">

<tr>

<td>Username:</td>

<td><input name="primerRemote1_name"></input></td>

</tr>

<tr>

<td>Password:</td>

<td><input name="primerRemote1_password"></input>

</td>

</tr>

<tr>

<td><input value="Login" type="submit"></input>

</td>

</tr>

</table>

 </form>

 Forgot password?

Rewritten Form Markup

6.4 Interaction Operations

The Markup Interface is used in two operational processes that change the state of the portlet:

The performBlockingInteraction() operation: This operation adds InteractionParams to the group of RegistrationContext, PortletContext, RuntimeContext, UserContext and MarkupParams data structures and requires that other operations for the page in which the affected portlet appears be suspended until it is finished.

InteractionParams: the portletStateChange flag which can have a value of

 “readWrite”, “cloneBeforeWrite” or “readOnly” which the Consumer sets to

indicate if a state change is acceptable, an interactionState string if any, an array of
any formParameters an array of any uploadContexts and an array of any extensions.
Updating Persistent Portlet State: The Consumer indicates whether or not it is safe for the Portlet to modify its persistent state by setting the portletStateChange field in the InteractionParams structure. (This is detailed in Section 6.3.2 of WSRP 1.0.)

The following message shows a performBlockingInteraction request message as it would be generated if the form from the Rewritten Form Markup is submitted to the Consumer providing the portlet to the end-user.

<urn:performBlockingInteraction

xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

<urn:registrationContext xsi:nil="true"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

<urn:portletContext>

<urn:portletHandle>primerPortlet</urn:portletHandle>

 </urn:portletContext>

 <urn:runtimeContext>

 <urn:userAuthentication>wsrp:none</urn:userAuthentication>

 <urn:portletInstanceKey>primerRemote1</urn:portletInstanceKey>

<urn:sessionID>A0YlJwOcfB1bnYSoWE9MdScCjJ2worBCe0Ja8S</urn:sessionID>

 </urn:runtimeContext>

 <urn:userContext>

 <urn:userContextKey>anonymous</urn:userContextKey>

 </urn:userContext>

 <urn:markupParams>

 <urn:secureClientCommunication>false</urn:secureClientCommunication>

<urn:locales>en-US</urn:locales>

<urn:locales>en</urn:locales>

<urn:mimeTypes>text/html</urn:mimeTypes>

<urn:mimeTypes>text/xml</urn:mimeTypes>

<urn:mimeTypes>application/xml</urn:mimeTypes>

<urn:mimeTypes>application/xhtml+xml</urn:mimeTypes>

<urn:mimeTypes>text/plain</urn:mimeTypes>

<urn:mimeTypes>video/x-mng</urn:mimeTypes>

<urn:mimeTypes>image/png</urn:mimeTypes>

<urn:mimeTypes>image/jpeg</urn:mimeTypes>

<urn:mimeTypes>image/gif</urn:mimeTypes>

<urn:mimeTypes>*/*</urn:mimeTypes>

<urn:mode>wsrp:view</urn:mode>

<urn:windowState>wsrp:normal</urn:windowState>

 <urn:clientData>

<urn:userAgent>Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.6) Gecko/20040207 Firefox/0.8</urn:userAgent>

</urn:clientData>

<urn:markupCharacterSets>ISO-8859-1</urn:markupCharacterSets>

<urn:markupCharacterSets>utf-8</urn:markupCharacterSets>

<urn:markupCharacterSets>*</urn:markupCharacterSets>

<urn:markupCharacterSets>UTF-16</urn:markupCharacterSets>

</urn:markupParams>

<urn:interactionParams>

<urn:portletStateChange>readOnly</urn:portletStateChange>

<urn:formParameters name="primerRemote1_password">

<urn:value>password</urn:value>

</urn:formParameters>

<urn:formParameters name="primerRemote1_name">

<urn:value>joedeveloper</urn:value>

</urn:formParameters>

</urn:interactionParams>

</urn:performBlockingInteraction>

Message 14: PerformBlockingInteraction Request

<performBlockingInteractionResponse
xmlns="urn:oasis:names:tc:wsrp:v1:types">

<updateResponse>

<sessionContext>

<sessionID>sid.e2++DxoNsrhmQ8l0fWpMg19s8DM=</sessionID>

<expires>-1</expires>

</sessionContext>

<portletContext>

<portletHandle>WSRP_Portlets:Portlet6</portletHandle>

</portletContext>

<markupContext>

<mimeType>text/html</mimeType>

<markupString>

…

</markupString>

<locale>en</locale>

</markupContext>

<navigationalState />

</updateResponse>

</performBlockingInteractionResponse>
Message 18: PerformBlockingInteractionResponse

Again, for the purpose of brevity, let’s assume that the markupString is received, rewritten if necessary and presented to the end-user . Only then is it allowed to send another getMarkup request to the Producer.

The following diagrams represent these kinds of interactions.

[image: image4.wmf]Consumer

Get Markup (with default mode/state)

Markup

Producer

Perform Blocking Interaction (with form data)

Navigational state and/or new mode and/or window state

User requests for a portal

page containing a portlet

Rewrite

Portal page with portlet

markup

User submits a form in

the portlet

Collect form data

Process

form data

Get Markup (with navigational state, mode, window state)

Markup

Portal page with

updated portlet markup

Rewrite

Consumer

Get Markup (with default mode/state)

Markup

Producer

User requests for a portal

page containing a portlet

Rewrite

Portal page with portlet

markup

User clicks on a link in

the portlet markup

Get Markup (with interaction state, mode, window state)

Markup

Portal page with

updated portlet markup

Rewrite

Collect form data

6.4.1 Using InitCookie

Managing persistent state includes managing cookies. While the producer is responsible for managing its own environment, it is useful in some instances, such as load balancing, for the Consumer to assist in initializing cookies.

For example, before the getMarkup for Message 14 the following InitCookie could have been sent to the Producer.

<initCookie

xmlns="urn:oasis:names:tc:wsrp:v1:types">

<registrationContext>

<registrationHandle>uri:Portlet6:test.LZAFuOV9iM4EVeKVYnd</registrationHandle>

</registrationContext>

</initCookie>

<initCookieResponse

xmlns="urn:oasis:names:tc:wsrp:v1:types" />

Message 19: InitCookie and InitCookieResponse

The following diagram shows updating persistent portal state, using InitCookie()

[image: image5.wmf]Consumer

Init Cookie

Cookies (when HTTP binding is used)

Producer

User requests for a portal

page containing a portlet

Initializes

session

User sesison ends

Release session

Subsequent calls include cookies

(when HTTP binding is used)

6.4.2 Releasing Sessions

As with cookies, and as shown above, it can be useful for the Consumer to inform the Producer that it will no longer be using a set of sessions by invoking releaseSessions(). This requires specifying the registrationContext and sessionID(s). The Consumer must not include any of supplied sessionID(s) on subsequent invocations.
6.5 Modes and States

The Markup Interface is used in five “Modes:” Modes refer to the specific ways in which the Consumer manages the interaction with the End-User. Portlets specify what Modes are supported in PortletDescription.The Consumer indicates the Mode to the portlet during getMarkup() and performBlockingInteraction() invocations using the MarkupParams data structure.

“wsrp:view” Mode: This mode is expected to render markup reflecting the current state of the Portlet. This includes any interactions, personalizations and all forms of state available to the user. This mode is required.

“wsrp:edit” Mode: This mode is expected to allow user to customize portlet behavior(s). Such state changes are expected to be persistent per portlet per user. This mode is optional.

“wsrp:help” Mode: This mode is expected to allow help screens to explain Portlet usage. This mode is optional.

“wsrp:preview” Mode: This mode is expected to provide a rendering of its standard “wsrp:view” mode content, as a visual sample of how this Portlet will appear on the End-User’s page with the current configuration. This mode is optional.

“wsrp:custom” Mode: The extensible RegistrationData structure provides a field for Consumers to declare additional custom modes. In addition, the extensible PortletDescription structure provides a field for Portlets to declare what modes they understand.

The Markup Interface is used in four “Window States:” Window state is an indicator or hint of the amount of page space that will be assigned to the Portlet.

“wsrp:normal” Window State: This state indicates the Portlet is likely sharing the aggregated page with other Portlets. This state may indicate device-specific display constraints. This state is required.

“wsrp:minimized” Window State
: This state indicates that no visible state should be rendered, but non-visible data such as JavaScript or hidden forms is allowed and the getMarkup() operation may be invoked. This state is optional.

“wsrp:maximized” Window State: This state indicates that the Portlet is the only or largest Portlet on a page.This state is optional.

“wsrp:solo” Window State:This state indicates that the Portlet is the only Portlet on a page. This state is optional.

Custom Window States: The extensible RegistrationData structure provides a field for Consumers to declare additional custom window states. In addition, the extensible PortletDescription structure contains a field for Portlets to declare what window states they understand.

6.6 User Categories

This feature is entirely optional. The specification states: “A Producer’s ServiceDescription MAY declare support for user categories. A Consumer MAY map End-Users to the user categories a Producer declares…”

User Category Assertions The reader should look at the Section 6.10.1 for a description of the available configurations of Producer and Consumer support for this set of features.

6.7 Faults

A consumer invoking the getMarkup operation must be prepared to handle the following faults:

AccessDenied:

InconsistentParameters:

InvalidRegistration:

MissingParameters:

OperationFailed:

InvalidUserCategory:

InvalidHandle:

InvalidCookie:

InvalidSession:

UnsupportedWindowState:

UnsupportedLocale:

UnsupportedMimeTypes:

7 Portlet Management Interface

The purpose of the portlet management interface is to let Consumers discover and customize properties associated with a portlet. This interface also allows a Consumer to clone a portlet, and destroy it when it is no longer in use.

Portlet properties are data associated with a portlet. By declaring properties for a portlet, the portlet allows customization of its behavior for each usage. An example of a portlet property is the list of stock symbols for the portfolioManager portlet. While this portlet encapsulates the functionality necessary to manage portfolios, the portlet may declare the list of the stock symbols as a property. However, since a Producer may offer the same portlet to several Consumers, and since each such Consumer may allow a number of users to use the same portlet, it is essential to be able to manage values of portlet properties for each distinct usage of the portlet.

In typical web applications, it is common to provide a user interface to let users change values of such properties, and store values of those properties for the user persistently. This allows each user to customize the behavior of the application. However, when the same application is offered as a portlet via a Producer, such customization may be performed in two ways:

Each user of the portlet (via a Consumer) customizes the values of properties via the user interface provided by the portlet. For example, the portfolioManager portlet may offer a page with a form to let the users enter the list of stock symbols. When the user submits new values, the Producer or the portlet may implicitly clone the portlet (refer to XXX [Editorial Note: should refer to Rex’s markup section]). In this scenario, the Consumer does not directly participate in the customization process. The customization is implicit and occurs during a user interaction with the portlet.

The Consumer offers a user interface to let users view the values of properties, and change their values. In our sample scenario, C Inc may offer a page to administer these properties. In this scenario, the user interacts with the Consumer, and not the portlet, for customization.

The portlet management interface is designed to address the second scenario. This interface specifies mechanisms using which a Consumer and a Producer will be able to create and manage multiple customizations of a portlet. This is an optional interface, and only producers offering portlet customization may implement this interface. This interface specifies the following operations.

getPortletDescription(): Get the description of a portlet.

getPortletPropertyDescription(): Get the description of properties (if any) of a portlet

getPortletProperties(): Get the properties (including their current values) of a portlet

setPortletProperties(): Set the values of properties of a portlet. This operation may implicitly clone a portlet.

clonePortlet(): To explicitly clone a portlet, such that any properties associated with the cloned portlet may be modified without affecting the properties of the portlet that it is cloned from

destroyPortlets(): To destroy portlets cloned explicitly or implicitly

7.1 Message Format

7.1.1 getPortletDescription

C Inc provides a page for its users to view the description of the portfolioManager portlet.

C Inc sends a getPortletDescription() request to P Inc to obtain the description of the portfolioManager portlet.

C Inc then uses the returned description to create a page.

Scenario 5: Get Portlet Description

C Inc. sends the following message to obtain the description of the portfolioManager portlet.

<urn:getPortletDescription

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CincRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 <urn:desiredLocales>en</urn:desiredLocales>

</urn:getPortletDescription>

Message 20: Get Portlet Description Request

In response, P Inc sends the following message with the description of the portlet:

<urn:portletDescription xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 <urn:markupTypes>

 <urn:mimeType>text/html</urn:mimeType>

 <urn:modes>wsrp:view</urn:modes>

 <urn:windowStates>wsrp:normal</urn:windowStates>

 <urn:locales>en</urn:locales>

 </urn:markupTypes>

 <urn:description xml:lang="en">

 <urn:value>Manages portfolios</urn:value>

 </urn:description>

 <urn:title xml:lang="en">

 <urn:value>Title</urn:value>

 </urn:title>

</urn:portletDescription>

Message 21: Get Portlet Description Response

Note that the portletDescription returned in this message is the same as the one returned by the getServiceDescription() operation of the service description interface shown in Message 7.

In order to setup a page to administer the properties of the portfolioManager portlet, C Inc. invokes the getPortletPropertyDescription() operation. Using the descriptions and types of these properties, C Inc designs a page.

Scenario 6: Get Portlet Property Desription

C Inc sends the following request to obtain a description of all properties associated with the portfolioManager portlet.

<urn:getPortletProperties

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portletFolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 <urn:names xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</urn:getPortletProperties>

Message 22: Get Portlet Property Description Request

The portfolioManager portlet has two properties viz tickerSymbols and refreshInterval. P Inc therefore returns the following response:

<urn:getPortletPropertyDescriptionResponse

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:modelDescription>

 <urn:propertyDescriptions type="xs:string" name="tickerSymbols">

 <urn:label xml:lang="en">

 <urn:value>Ticker Symbols</urn:value>

 </urn:label>

 </urn:propertyDescriptions>

 <urn:propertyDescriptions type="xs:string" name="refreshInterval">

 <urn:label xml:lang="en">

 <urn:value>Refresh Interval</urn:value>

 </urn:label>

 </urn:propertyDescriptions>

 </urn:modelDescription>

</urn:getPortletPropertyDescriptionResponse>

Message 23: Portlet Property Description Response

This description indicates the description of the two properties associated with the portfolioManager portlet. Each property description also indicates the schema type of the property. In this specific scenario, both properties are of type XML schema type “string”. The type helps the Consumer in preparing a user interface for entering values for the properties.

In addition to the type, a Producer may optionally supply a label and a hint. In the above message, labels provide a short description of each property.

Now consider the following scenario.

C Inc can use this description to design, for example, a HTML form with two text fields for displaying and updating tickerSymbols and refreshInterval properties.

A user of C Inc would like to update the tickerSymbols and the refreshInterval using the page setup by C Inc.

C Inc sends a getPortletProperties() request to P Inc to obtain the current values of the properties. C Inc uses the returned property values to display a form filled with the current values.

User enters new values for the properties, and submits the form. C Inc sends a setPortletProperties() request to P Inc to update the values of the properties.

Scenario 7: Setting Portlet Properties

In this scenario, note that the portlet with handle portfolioManager is a producer offered portlet. A producer offered portlet is one that is offered in the service description response with the same portlet handle. It is very likely that several Consumers and users share the same producer offered portlets. Any persistent state changes made to a producer offered portlet would therefore be shared by all its usages. In our scenario, since the properties associated with the portfolioManager portlet are specific to each user, P Inc cannot directly update the properties for the portfolioManager portlet. Instead, P Inc first clones the portlet, and associates the new property values with the cloned portlet.

This sequence of interactions is shown in Figure 3

[image: image6.wmf]Consumer

Get Portlet Properties (original portlet context)

Portlet Properties

Producer

Get portlet properties

Update portlet

properties

Clones the portlet

Set Portlet Properties (original cortlet context)

New portlet context

Figure 3: Setting Portlet Properties With Implicit Cloning

The messages are as follows.

C Inc sends the following message to get the current (the default) values of properties associated with the portfolioManager portlet.

<urn:getPortletProperties

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 <urn:names xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</urn:getPortletProperties>

Message 24: Get Portlet Properties Request

In this request, the value of the portlet handle is the same that of the portfolio manager portlet offered in the service description of P Inc. Also note the names element in this request. When this element is set “nil”, this request implies that the Producer must return values for all properties associated with the portlet. In case the Consumer is interested only in the values of certain properties, the Consumer may specify the names for which it needs values. In the following request, C Inc specifies the tickerSymbols property.

<urn:getPortletProperties

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/

 <urn:names>tickerSymbols</urn:names>

</urn:getPortletProperties>

Message 25: Get Portlet Properties Request (For Specific Properties)

The default value of the tickerSymbols property is “AMZN” and the default value of the refreshInterval field is 180 seconds. For the request in Message , P Inc returns the following response with these values.

<urn:getPortletPropertiesResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:properties name="tickerSymbols">

 <urn:stringValue>AMZN</urn:stringValue>

 </urn:properties>

 <urn:properties name="refreshInterval">

 <urn:stringValue>180</urn:stringValue>

 </urn:properties>

</urn:getPortletPropertiesResponse>

Message 26: Get Portlet Properties Response

C Inc can now display an HTML form with the current values filled in. After the user updates the form with new values (say, “AMZN, YHOO” for the tickerSymbol property and “60” secs for the refreshInterval property), C Inc sends the following request to P Inc.

<urn:setPortletProperties

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 <urn:propertyList>

 <urn:properties name="tickerSymbols">

 <urn:stringValue>AMZN, YHOO</urn:stringValue>

 </urn:properties>

 <urn:properties name="refreshInterval">

 <urn:stringValue>60</urn:stringValue>

 </urn:properties>

 </urn:propertyList>

</urn:setPortletProperties>

Message 27: Set Portlet Properties Request

Since the portlet handle “portfolioManager” is producer-offered, P Inc implicitly clones the portlet before updating the properties. P Inc returns the updated portlet handle in its response, as shown below.

<urn:setPortletPropertiesResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:portletHandle>portfolioManager.1</urn:portletHandle>

</urn:setPortletPropertiesResponse>

Message 28: Set Portlet Properties Response

This response includes the handle of the cloned portlet “portfolioManager.1”. To associate the customized properties to the user, C Inc must use the cloned portlet handle instead of the original handle in subsequent requests made to P Inc for that user. P Inc may not clone the portlet on subsequent requests to set portlet properties.

If the Producer is unable to persistently update portlet properties, the Producer may serialize updated properties and return those as portletState in the setPortletPropertiesResponse.

When a Consumer receives such portletState during implicit/explicit cloning, the Consumer is required to supply the same with PortletContext in all future invocations for that portlet.

In the above scenario, P Inc cloned the portlet implicitly when C Inc attempted to update properties of a producer offered portlet. Instead, C Inc may first request P Inc to clone the portlet, and then set the properties.

Consider the following scenario that sets portlet properties after explicitly cloning the portlet.

A user requests C Inc to setup a page to access the portfolioManager portlet. C Inc sends a clonePortlet() request to P Inc to clone the portlet.

The user subsequently follows Scenario 7 to customize the portfolioManager portlet.

Scenario 8: Setting Properties with Explicit Cloning

The following sequence shows the sequence of interactions for setting portlet properties with explicit cloning.

[image: image7.wmf]Consumer

Clone portlet (original portlet context)

New Portlet Context

Producer

Portal admin creates a new

portal page for a user

Clones the portlet

Get Portlet Properties (new portlet context)

Portlet Properties

Get portlet properties

Update portlet

properties

Set Portlet Properties (new portlet context)

Same Portlet Context

Figure 4: Setting Portlet Properties With Explicit Cloning

C Inc sends the following request to clone the portfolioManager portlet.

<urn:clonePortlet xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletContext>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 </urn:portletContext>

 <urn:userContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</urn:clonePortlet>

Message 29: Clone Portlet Request

P Inc creates a clone of the portfolioManager portlet, and returns the following response with a new portlet handle.

<urn:clonePortletResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:portletHandle>portfolioManager.1</urn:portletHandle>

</urn:clonePortletResponse>

Message 30: Clone Portlet Response

The returned portlet handle is associated with a consumer created portlet, created by explicitly cloning a producer offered portlet.

C Inc now uses the new portlet handle during all subsequent requests for the portfolioManager portlet for that user. Note that C Inc may also use the new portlet handle while calling getPortletDescription() to get a description of the portlet.

In the above scenarios, portlets are cloned to associate customizations of portlet properties. In order to associate such customizations with cloned portlets, the Producer may have to manage some persistent state for the duration of the usage of that customization. Once the Consumer determines that a given customization is no longer in use, the Consumer may request the Producer to destroy the portlet.

The destroyPortlets() operation can be used to destroy one more consumer created portlets. Consider the following scenario.

A user requests C Inc to terminate his user account with C Inc. Since that user’s customizations are no longer required, C Inc sends a request P Inc to destroy portlets cloned for that user.

Scenario 9: Destroy Portlets

In order to destroy portlets, C Inc sends the following request to P Inc.

<urn:destroyPortlets xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

 <urn:portletHandles>portfolioManager.</urn:portletHandles>

</urn:destroyPortlets>

Scenario 10: Destroy Portlets Request

Note that C Inc may send more than one portlet handles in this request, so that several portlets can be destroyed in a single request.

Upon verifying that the portlet handle refers to a consumer created portlet, P Inc may delete any customizations associated with each portlet being destroyed, and return the following response.

<urn:destroyPortletsResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>

Message 31: Destroy Portlets Response

However, if the Consumer attempts to destroy a producer offered portlet, or if the Producer fails to destroy a portlet due to some internal failure, the Producer may include the portlets that it failed to destroy and a reason for the failure in the destroyPortletsResponse. The following message shows the response from P Inc when C Inc attempts to destroy the producer offered portlet with handle portfolioManager.

<urn:destroyPortletsResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:destroyFailed>

 <urn:portletHandle>portfolioManager</urn:portletHandle>

 <urn:reason>Producer offered portlet. Can't be destroyed</urn:reason>

 </urn:destroyFailed>

</urn:destroyPortletsResponse>

Message 32: Destroy Portlets Response When Failed

This response indicates the P Inc failed to destroy the producer offered portlet with handle portfolioManager.

After a consumer created portlet has been destroyed, the Consumer can no longer use the portlet with that handle.

The following sequence illustrates a Consumer aggregating cloned portlets for several users, and destroying the cloned portlets when such portlets are no longer required.

[image: image8.wmf]Consumer

Clone portlet (original Portlet Context)

New Portlet Context

Producer

Portal admin creates a new

portal page for a user

Clones the portlet

Clone portlet (original Portlet Context)

New Portlet Context

Portal admin creates a new

portal page for another user

Clones the portlet

Subsequent calls to Producer with

new Portlet Context

Destroy portlet (Cloned Portlet Context)

Deleted

Portal admin removes the portal

page for the first user

Deletes the portlet

Destroy portlet (Cloned Portlet Context)

Deleted

Portal admin removes the portal

page for the second user

Deletes the portlet

Figure 5: Cloning and Destroy for Managing Portlet Customizations

7.2 Faults

Consumers invoking operations on the portlet management interface must be prepared to handle the following faults:

AccessDenied: A Producer throws this fault when it is unable to process a given request due to internal security violations.

InvalidUserCategory: A Producer throws this fault when user categories supplied (if any) by the Consumer are invalid.

InconsistentParameters: A Producer throws this fault when the request data is not conistent.

InvalidRegistration: A producer throws this fault when the registration data supplied by the consumer is not valid

MissingParameters: A Producer throws this fault when any required data is missing.

OperationFailed: A producer throws this fault when it fails to process the operation.

InvalidHandle: A Producer throws this fault when any supplied handle is not valid. For example, a Producer throws this fault the supplied protletHandle is no longer valid.

8 Use Profiles

The Use Profile describes at a high level the basic functionality of a Producer or Consumer implementation. These are to be regarded as merely a general guideline. Implementers will likely compose their implementation by selecting from a “palette” of functionality, and later sections of this primer lay out these use profiles across several functional axes.

An implementation can therefore be said to conform across potentially several different functional areas, offering advanced features in some areas while remaining “simple” or even “base” in others.

8.1 Producer Levels

8.1.1 Base

Implements only the MUST interfaces

No state (session or persistent); uses opaque mechanism to send state back to Consumer

No cloning

No initialization required

Does not rewrite URLs in markup

Does not require registration

8.1.2 Simple

May request initialization; could store state in cookies

Supports cloning

May require registration (out-of-band).

Session state; creates and sends session handles to the Consumer

8.1.3 Complex

May rewrite URLs (requires Consumer templates)

May offer both in-band and out-of- band registration

Persistent local state

May support grouping of portlets

Cache validation

8.2 Consumer Levels

8.2.1 Base

Implements only the MUST interfaces

VIEW mode, NORMAL window state only

Supplies no user information (portlet may fault or degrade functionality in response).

Rewrites URLs

Initializes the Producer if required (initCookie)

Handles Producer cookies

Limited markup types (e.g. html)

Does not clone (“readOnly”; may limit functionality of portlets that offer personalization)

No in-band registration

8.2.2 Simple

Support for standard modes and window states

Support for in-band registration

Supplies basic user information (e.g., identity and authorization type)

Caching according to Producer-supplied cache control.

May explicitly clone portlets.

Handles implicit clones (“cloneBeforeWrite”).

8.2.3 Complex

May supply URL rewrite templates to a Producer that is capable of rewriting URLs in portlet markup.

Multiple markup types (e.g. html and wml)

Complex user management, willing to supply standard/extended user attributes May support custom window states and/or modes.

Multiple levels of user access (user categories)

Localization

May use explicit property-setting mechanism; create custom UI for property management.

9 Basic Topics/Issues

9.1 Markup

OperationFailed semantics

Reference portlet style guide?

9.2 Fault Handling

In the Markup interface, operations are tied to end-user activity. Due to the volume and concurrent nature of these requests, any fault should be used as a clue to the Consumer as to the “health” of the target Producer/portlet. A fault-tolerant Consumer implementation will not allow performance to degrade by continually firing requests at a non-responding or malfunctioning port/portletHandle, thereby incurring timeout penalties when rendering pages.

These faults should be interpreted by Consumers as indicating a serious problem with this Producer. Suggested corrective action in ()’s:

InvalidRegistration (Cancel request; re-register/re-bind portlets?)

InvalidHandle (Cancel request; destroyClone() if CCP handle; re-bind)

These are routine faults that could occur due to ordinary Producer conditions.

InvalidCookie (Re-init Producer cookie; re-try request)

InvalidSession (Re-init session; re-try request)

These are faults that shouldn’t occur ordinarily, and may indicate a problem with the Consumer implementation. These indicate a need to troubleshoot the implementation:

InconsistentParameters

MissingParameters

These are operational faults that may indicate a transient condition at the Producer:

OperationFailed (Capture/log fault details; don’t retry request; if continually thrown, may indicate a more serious Producer issue)

These faults indicate a problem with the end-user capabilities or details of the request, and will probably recur until the Consumer takes corrective action:

AccessDenied (Bad registration context?)

InvalidUserCategory (correct user category)

UnsupportedLocale (correct locale)

UnsupportedMimeType (correct mime type)

UnsupportedMode (correct mode)

UnsupportedWindowState (correct window state)

9.3 Caching

9.4 Persistence

Opaque state: This is always scoped by the Producer to a portletHandle. If a Consumer shares a portletHandle among multiple users, this may introduce problems if the Producer expects to persist user-specific state; how to isolate this user’s activity from others? It is suggested that when the Producer detects this condition, that it clones the portlet (if Consumer specified cloneOnWrite semantics in its interaction request context), or throws a PortletStateChangeRequired fault (if Consumer specifies readOnly, or even readWrite). Consumers, to be safe, should NOT rely on a Producer to undertake this level of state change detection, unless it has specific knowledge of that Producer’s capabilities (i.e. it implements the PortletManagementInterface; interpretation for hasUserSpecificState?) The Consumer should either explicitly clone a portlet (safest) for each end-user that wants to utilize it, or use the cloneOnWrite semantics (not quite as safe, depending on how Producer makes this determination, although if Producer sets hasUserSpecificState==true, this may indicate the Producer may manage user-specific state properly).

Cloning, including semantics for hasUserSpecificState

9.5 Statefulness

Cookie: Cookies are not recommended as a generic means of storing state; even though the Consumer is required to honor Producer-set cookies. The main use case is to enable cookie-based (http) load balancers to match requests to specific Producer nodes, so that session continuity is not lost.

Navigational: Current web applications make use of the request query string to encode state, and navigational state can be considered the WSRP equivalent. As with the query string, parameter names and values in navigational state must be considered visible (although it could certainly be encrypted), and so privacy considerations may be one factor in determining whether something should be encoded as navigational state, rather than an alternative such as session state. The primary use case for supporting navigational state is to facilitate the ability of a user to “bookmark” a portlet, permitting the user to easily navigate to a known point in the portlet’s presentation. So, the main considerations for portlet implementers in determining what, if anything, to put in navigational state, come down to questions of a) what navigational “points” are available in the portlet presentation that a user may be interested in bookmarking, and b) what parameters would be needed to “prime” the necessary state for the portlet to render the exact markup required to recreate the presentation for each of these “points”.

Session: As in today’s web application environments, WSRP supports the concept of sessions, and therefore portlets are able to persist state that is applicable to a “session”, in whatever sense that’s important to the implementation. The Consumer must assist the Producer in managing WSRP sessions, however, in much the same way today’s servlet environments depend on a session key being passed with each request (typically encoded in a cookie). The WSRP session ID may be generated by the Producer during a sequence of Consumer requests, and the Consumer must re-send this ID in each subsequent request; otherwise, the portlet implementation would have a difficult time matching the inbound request to the correct session context. When does a Producer need to generate a new session ID? There is no hard and fast rule. One approach may be to replicate the behavior of java servlets, and generate a new session ID on the initial request, which the Consumer would then “join” by including the session ID in subsequent requests.

9.6 Modes/Window States

Carry JSR 168-specific modes. There is already overlap between 168 and WSRP modes and window states (WSRP is a superset):

Common modes: view, help, edit, preview

Common window states: normal, maximized, minimized

Implementations that need custom modes/window states should ensure that these are mutually understood between Consumer and Producer, and unambiguous.

9.7 URL Rewriting

10 Advanced Topics/Issues

10.1

User Profile and personalization

Unauthenticated (“guest”) access

userContextKey == UserCategory, for conveying common attributes for a class of users

10.2 Localization and Internationalization

10.3 Security

SSL (Client)

HTTP Digest

SAML/XACML (not for 1.0)

10.4 Extensions

Why? When? etc.

10.5 Carrying custom modes

JSR 168?

WSRP: SOLO window state. Interpret as maximized for JSR 168?

Implementation-specific: These should be in an implementation-specific namespace.

If a Consumer does not understand a portlet’s custom mode/window state, it is unlikely to request markup using that mode/ws. This should be ok, given the fact the portlet MUST support a minimal set of standard modes/ws.

A Consumer could have its own set of custom modes and window states, and attempt to request a portlet render in one of these. If the portlet does not comprehend, it should throw an appropriate fault message. However, it could be beneficial for the portlet to also render the requested markup anyway, just in a standard mode/ws such as view/normal. That way, the Consumer still has markup it can use to build the end-user page (rather than just an error message), and it has fault information it can use to take corrective action regarding its use of custom modes/ws. However, the portlet also may have its own implementation restrictions that dictate a stricter application of modes/window states, and so it is ultimately the prerogative of the portlet implementation not to generate any markup in this case.

10.6 Multipart upload

Producer must be prepared to reconstruct the input from a varietly of representations (single UploadContext, multiple UploadContexts)

Minimal required attributes/headers?

�Help interpret not-so-obvious points in the spec

�These names are fine. No need to change.

�As we discuss different choices, we need to motivate the reader about those choices. May include example problems to drive the motivation.

�Use the scenario to motivate various messages. This is a general comment about all messages in the primer.

�Discuss out-of-band communication that producers and consumers may go through to maintain a registration.

�Get reasons for registration. We should motivate why registration is a good idea. When we come into registration, explain that the registration interface is a way

to do registration. Also elaborate on out-of-band aspects.

�At the end of the previous chapter, make a case of registration. We need to motivate the reader about registration before getting into the Registration Interface.

�Ex: There is a new property required by the producer. Consumer calls modifyRegistration to supply the new property.

�Motivate why a producer and/or consumer terminate a registration. What are the implications of a producer terminating a registration.

�Motivate the reader about interactions. Interactions require state changes. Motivate why there are two operations - getMarkup and performBlockingInteractionResponse. Why this is a single call in servlet /JSP?ASP programming models and why we need a two step process. Also mention bookmarkability. Why two calls, and the advantages to having. May mention why this is common in portlet programming.

�PAGE \# "'Page: '#'�'" �� Already listed

�Also discuss why performBlockingInteraction is blocking. For state management, aggregation into pages, pushing state to browser etc.

�Better to have a separate (sub) section on state management. Also talk about persistent state and forward reference to portlet management interface.

�Also introduce state management issues pertaining to the markup interface. Get into state management - session vs nav state. Also persistent state. Then to implicit cloning. Drive motivation for different kinds of state. Why portlets are designed to have customization state

�We can skip templates from messages. Just build the motivation.

Motivate and clarify different fields in messages.�

�Message 12 is not valid. Need to make sure all messages are valid.

�Message 13 is incorrect. It should be throwing a fault with the given case. Text below this message is incorrect. Needs to be cleaned up.

�Need to clean up messages.

�Session context will only appear if a new session has been initiated. Clarify this point.

�Motivate consumer rewriting vs producer writing of URLs. Assume consumer rewriting. Describe conceptually. Benefits of either approach. Simplicity vs complexity. Static content (a requirement) markup is independent of the consumer.

�Not clear. What is the state of the portlet?

�Since we are interested in concepts, and having MarkupContext in pbia response is an optimization, suggests to exclude the MarupContext from the response, but mention it as an optimization.

�Inline the diagrams with the messages.

 Can not collect form data from render URLs.

 Spell-check

 Separate initCookie diagram for cookies and sessions

�Talk about different kinds of cookies. This concept is somewhat confusing.

�View and normal are required. Mention why?

�Need to motivate the notion of states and modes. How do consumers/producers may interpret different modes and states. Ex, minimized, maximized etc.

�getMarkup is optional for this state.

�Questions on user categories. Mike suggests that "categories is an application description of category of a user" not related to security role of a user.

� Questions on the sprinkling faults across the primer. Move to Section 9. Discuss operation-specific faults inline with messages.

�This section is dominated by messages. Needs more flow with text

� This is for managing explicit lifecycle of persistent state of portlets.

�Figure is incorrect. Consumer must do a preclone here.

�Suggests to make one of the properties as int.

�Multiple properties. Call it "tickerSymbolList". No comma between elements in a list. Don't have to introduce a list type

here, but could use it like one.

�Implicit cloning is not allowed during setPortletProperties. The consumer is required to make a decision on whether cloning is required before calling setPortletProperties. The consumer must send readWrite on

setPortletProperties.

�Incorrect caption for Message 30.

�Drop destroy failed message. Because consumer is supposed to know if a portlet is a POP.

�Clinton volunteered to look at Use Profile sections.

�Not required

�9.2 to include all faults. We limit complexity of fault handling.

�Try to classify faults into general faults and

interface-specific faults.

�Atul to write.

�Subbu to collapse 9.4 and 9.5 into one. Also include motivations.

�Drop this.

�Move to markup section.

�Discuss common pitfalls, such as cookies, sessions, uploads, redirect etc. Also include the list of issues discovered.

�Discuss stack related issues. Refer to archives for details.

�Subbu to elaborate

�Drop

�Move to markup section.

6

wsrp-primer-1.0
Web Services for Remote Portlets 1.0 Primer

Page 8 of 40

_1128401075.vsd

_1128918968.vsd

_1130142551.vsd

_1130161721.vsd

_1130142502.vsd

_1128401114.vsd

_1128090756.vsd

