Web Services for Remote Portlets 1.0 Primer
Version 0.45

25 June 2004

5 Markup Interface

5.1 Description

In order for a Consumer to generate a page that aggregates portlets offered by one or more Producers, the Consumer must first obtain the markup of each portlet from each Producer. As users interact with the portlet (e.g., by submitting a form in the portlet’s markup), the Consumer must be able to send such interaction requests to the Producer, and then receive markup reflecting user interaction. The Markup interface specifies operations for achieving these tasks. All Producers are required to support this interface

Collecting markup and aggregating it into a page poses several challenges.

The Markup Interface has been designed to accommodate a two-step process. In the first step, the Consumer must request and receive the initial markup for the portlet requested by the User. The portlet can be either stateful or stateless. For version 1.0 of the specification, it was decided to provide for the stateful condition, thus the second step, allowing some basic interaction and change of state capability. So, in the second step, the Consumer must relay an allowed interaction requested by the User to the Producer, and send the result returned from the Producer to the User.
5.1.1 Markup Fragments and Aggregation

A primary reason for creating WSRP 1.0 was to allow the aggregation of multiple content units, portlets, from different sources on the same web page. HTML 4.01 and XHTML 1.1 treat pages as separate documents and disallow multiple BODY Elements, represented as <body> tags, in a single document. So, to accomplish the task of allowing different portlets to be aggregated in a common page, simply adding minimally repackaged pages, individual documents with individual BODY Elements is not allowable. Therefore, Markup Fragments are required.
Since the Consumer is most likely to aggregate the portlet’s markup (such as HTML or XHTML) into a page that also includes markup from other portlets; the Producer must generate markup fragments. For rules on what differentiates full markup from markup fragments, refer to Section 10.5 of WSRP 1.0 specification. Along with the markup fragment, the Producer must also return certain properties of the markup fragment, such as the content type, character encoding, locale etc. These properties and the operations by which they are exchanged are discussed in the Section 6 Portlet Management Interface of this Primer.
5.1.2 CSS Portlet Classes

HTML 4.01 states: “Since style sheets are now the preferred way to specify a document's presentation, the presentational attributes of BODY have been deprecated.” Accordingly, WSRP 1.0 has adopted an initial basic set of CSS classes designed to provide a standard set of display options for portlets. For a list with tables of these portlet classes, see Section 10.6 of WSRP 1.0 specification. Use of CSS portlet classes are optional.
5.2 Purposes Served: Two Step Protocol

The Markup Interface
 serves the purposes of providing for the presentation of Portlets, the processing of Interactions allowed for Portlets and the management of aspects of Portlet State required for correctly presenting Portlets. To do this we chose a two step process of Presentation and Interaction to allow flexibility in the future for increasing customization potential for both Consumers and Producers.
5.2.1 Presentation: getMarkup()

The getMarkup() operation of the Markup Interface serves the purpose of providing the portlet’s display presentation instructions and current values for the portlet’s properties. This constitutes the current state of the portlet requested.

The first getMarkup() operation that invokes an instance of a portlet from a producer also constitutes the initiation of the session which will be represented by the sessionID provided by the Producer in the getMarkupResponse. All portlet producers are required to support this operation.
The option of using the navigationalState field to store the URL and reduce the overhead of regular page refresh tasks and to allow User bookmarking is carried in the MarkupParams structure in getMarkup() and peformBlockingInteraction()to propagate the state to the User’s browser as an optimization for handling persistent state. [See Section 6.3.1 and Section 6.3.2 of the WRSP 1.0 Specification for more details.]

5.2.2 Interaction: performBlockingInteraction()

The performBlockingInteraction() operation of the Markup Interface serves the purpose of changing the portlet’s display instructions and/or current values for the portlet’s properties. This introduces the concept of changeable or transient state in addition to persistent states.

Unlike a JSP or ASP web page, where obtaining the page resulting from an interaction such as clicking a submit button can be performed in a single operation, a portlet must be able to co-exist on the same page with other portlets possibly from the same Producer, or from different producers. This entails significant consequences for managing interactivity when a Producer wants to have shared state with other portlets being aggregated on the same page, such as when a Producer provides a common back-end database for those portlets. This consideratipn prompted WSRP’s two-step process whereby the interaction and any shared state with other portlets from the same producer on the same aggregated page takes precedence.
Thus, performBlockingInteraction() is invoked and returned, before the Consumer can invoke getMarkup() for other portlets from that producer on the aggregated page once the interaction has been initiated. This allows Producer-mediated sharing to proceed safely (provided it happens in a synchronous manner)

This constitutes a new current state of the portlet requested. During the operation, the Consumer must not begin generation of the aggregated page containing the portlet nor gather markup for other portlets on that page. This ‘blocking’ allows Producer-mediated sharing with other portlets to proceed safely before any subsequent getMarkup() operations are allowed.
This operation creates a new value for navigationalState which the Consumer must specifically allow through the portletStateChange field value and must also supply to the Producer for any new invocations of getMarkup() or performBlockingInteraction() and must also change when propagated to the User’s browser.

5.3 State Management

The getMarkup()and performBlockingInteraction() operations of the Markup Interface are provided with the means for carrying persistent state and for changing state for the portlets delivered to the User. Recognizing that there are several common scenarios for Portlets with varying needs regarding statefulness, WSRP 1.0 provides a basic session ID mechanism and an optional navigational state mechanism for handling these in the Markup Interface. These scenarios and methods are detailed in Section 6.7 of the WSRP 1.0 Specification.

Some of the underlying concepts within the InteractionParams Structure, specifically in the portletStateChange field for cloneBeforeWrite” introduces cloning portlets for optimization purposes which is more thoroughly developed in the Portlet Management Interface.

However, it is important to remember that portlets have been designed to have interactive elements which necessitate having the means to manage statefulness and to customize and coordinate portletStateChange between Producer and Consumer to better serve the User.

5.4 Message Format

Following our example, a consumer, C Inc. sends the following SOAP message with the request document in the body of the message to the producer, P Inc. This message contains:

(a) RegistrationContext carries the registrationHandle which the Consumer uses to identify itself to the Producer.It may also include a base64Binary for registrationState and an array of any extensions the Producer provides.

(b) PortletContext carries the portletHandle which the Consumer uses to identify the portlet to the Producer. It may also include a base64Binary for portletState and an array of any extensions the Producers provides.

(c) RuntimeContext carries the userAuthetication the Consumer uses to identify the authentication that was done to authenticate the user. It may also include a portletInstanceKey, namespace prefix, templates, sessionID, and an array of any extensions the Producer provides.

(d) UserContext carries the userContextKey the Consumer uses to uniquely identify the UserContext. It may also include userCategories, a profile and any extensions the Producer provides.

(e) MarkupParams carries the boolean value for secureClientCommunication, an array for locales, an array for mimeTypes and the mode and window state. It may also include clientData, an array for navigationalState, an array for markupCharacterSets, a validateTag, an array for validNewModes, an array for validNewWindowStates and an array of any extensions the Producer provides.

Note the following from this request:

(f) RegistrationContext: The registrationHandle is nil.

(g) PortletContext: The portletHandle is primerPortlet.

(h) RuntimeContext: The userAuthentication is wsrp:none.

(i) UserContext: The userContextKey is anonymous and there are no userCategories.

(j) MarkupParams: the Boolean for secureClientCommunications is false, the locales is en, the mimeTypes is text/html, the mode is wsrp:view, the windowState is wsrp:normal, the clientData holds a value for userAgent identifying the browser and operating system and the markupCharacterSet is UTF-8.

<urn:getMarkup xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 <urn:portletContext>

 <urn:portletHandle>primerPortlet</urn:portletHandle>

 </urn:portletContext>

 <urn:runtimeContext>

 <urn:userAuthentication>wsrp:none</urn:userAuthentication>

 <urn:portletInstanceKey>primerRemote1</urn:portletInstanceKey>

 <urn:namespacePrefix>primerRemote1</urn:namespacePrefix>

 </urn:runtimeContext>

 <urn:userContext>

 <urn:userContextKey>anonymous</urn:userContextKey>

 </urn:userContext>

 <urn:markupParams>

 <urn:secureClientCommunication>false</urn:secureClientCommunication>

 <urn:locales>en-US</urn:locales>

 <urn:mimeTypes>text/html</urn:mimeTypes>

 <urn:mode>wsrp:view</urn:mode>

 <urn:windowState>wsrp:normal</urn:windowState>

 <urn:clientData>

 <urn:userAgent>Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.6) Gecko/20040206 Firefox/0.8</urn:userAgent>

 </urn:clientData>

 <urn:markupCharacterSets>UTF-8</urn:markupCharacterSets>

 </urn:markupParams>

</urn:getMarkup>

Message 12 getMarkup Request

This is a basic form of a getMarkup Request that a consumer could send to a producer. There is no registrationHandle to validate, so the producer may now send a getMarkupResponse that includes:

(k) MarkupContext which contains the markup for the portlet.

(l) SessionContext with a sessionID, a value for expires and an array of any extensions the Producer provides.

(m) Extensions from namespaces other than WSRP.

Note in our example below:

(n) A preferredTitle Portfolio Manager which should be honored.

(o) A sessionID AHSVUkq32zmw31M8v22cDpPLMhd11W7ZsbPkBsPof9xYCdS1I53x!-258797612 which must be used.

<urn:getMarkupResponse xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:markupContext>

 <urn:mimeType>text/html; charset=UTF-8</urn:mimeType>

 <urn:markupString><![CDATA[<form method="post" action="wsrp_rewrite?wsrp-urlType=blockingAction&wsrp-secureURL=falsewsrp-interactionState=/wsrp_rewrite" id="primerRemote1_form">

 <table border="0" width="100%">

<tr>

<td>Enter Stock Symbol</td>

<td><input name="primerRemote1_symbol"></td>

</tr>

<tr>

<td><input type="submit" value="Submit"></td>

</tr>

</table>

</form>]]></urn:markupString>

 <urn:locale>en-US</urn:locale>

 <urn:requiresUrlRewriting>true</urn:requiresUrlRewriting>

 <urn:preferredTitle>Portfolio Manager</urn:preferredTitle>

 </urn:markupContext>

 <urn:sessionContext>

 <urn:sessionID>AHSVUkq32zmw31M8v22cDpPLMhd11W7ZsbPkBsPof9xYCdS1I53x!-258797612</urn:sessionID>

 <urn:expires>300</urn:expires>

 </urn:sessionContext>

</urn:getMarkupResponse>

Message 13: getMarkup Response

[image: image1.wmf]Consumer

Get Markup (with default mode/state)

Markup

Producer

Perform Blocking Interaction (with form data)

Navigational state and/or new mode and/or window state

User requests for a portal

page containing a portlet

Rewrite

Portal page with portlet

markup

User submits a form in

the portlet

Collect form data

Process

form data

Get Markup (with navigational state, mode, window state)

Markup

Portal page with

updated portlet markup

Rewrite

Consumer

Get Markup (with default mode/state)

Markup

Producer

User requests for a portal

page containing a portlet

Rewrite

Portal page with portlet

markup

User clicks on a link in

the portlet markup

Get Markup (with interaction state, mode, window state)

Markup

Portal page with

updated portlet markup

Rewrite

Collect form data

5.5 Interaction Operations

The Markup Interface is used in two operational processes that change the state of the portlet such as submitting a form request by the user to add a new stock symbol in the user’s portlet example above or if, for instance, a new stock and its symbol is added to the collection of stocks available to the User in the Portfolio Manager Portlet by the Producer:

The performBlockingInteraction() operation: This operation adds InteractionParams to the group of RegistrationContext, PortletContext, RuntimeContext, UserContext and MarkupParams of the getMarkup() operation data structures and requires, as previously explained that other operations for the page in which the affected portlet appears be suspended until it is finished.

(p)
InteractionParams: the portletStateChange flag which can have a value of “readWrite”, “cloneBeforeWrite” or “readOnly” which the Consumer sets to indicate if a state change is acceptable, an interactionState string if any, an array of any formParameters, an array of any uploadContexts and an array of any extensions.

Updating Persistent Portlet State: The Consumer indicates whether or not it is safe for the Portlet to modify its persistent state by setting the portletStateChange field in the InteractionParams structure. While such changes usually occur during a performBlockingInteraction() operation for a specific portlet, the value of this field in other portlets from the same Producer allows those other portlets to be updated during such operations. (This is detailed in Section 6.3.2 of WSRP 1.0.)

The following message shows a performBlockingInteraction request message as it would be generated if the form from our preceding getMarkup() is submitted by the User to the Consumer requesting the PINC symbol. Note that the portletStateChange field has been set to “readOnly” to indicate that a state change is not acceptable to the Consumer.
<urn:performBlockingInteraction xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

 <urn:portletContext>

 <urn:portletHandle>primerPortlet</urn:portletHandle>

 </urn:portletContext>

 <urn:runtimeContext>

 <urn:userAuthentication>wsrp:none</urn:userAuthentication>

 <urn:portletInstanceKey>primerRemote1</urn:portletInstanceKey>

 </urn:runtimeContext>

 <urn:userContext>

 <urn:userContextKey>anonymous</urn:userContextKey>

 </urn:userContext>

 <urn:markupParams>

 <urn:secureClientCommunication>false</urn:secureClientCommunication>

 <urn:locales>en-US</urn:locales>

 <urn:mimeTypes>text/html</urn:mimeTypes>

 <urn:mode>wsrp:view</urn:mode>

 <urn:windowState>wsrp:normal</urn:windowState>

 <urn:clientData>

 <urn:userAgent>Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.6) Gecko/20040206 Firefox/0.8</urn:userAgent>

 </urn:clientData>

 <urn:markupCharacterSets>UTF-8</urn:markupCharacterSets>

 </urn:markupParams>

 <urn:interactionParams>

 <urn:portletStateChange>readOnly</urn:portletStateChange>

 <urn:formParameters name="primerRemote1_symbol">

 <urn:value>PINC</urn:value>

 </urn:formParameters>

 </urn:interactionParams>

</urn:performBlockingInteraction>

Message 14: PerformBlockingInteraction Request

This request is answered with the following message. Note that a new sessionID has been generated as part of a new sessionContext along with a navigationalState value as part of the updateResponse.
<urn:performBlockingInteractionResponse

 xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:updateResponse>

 <urn:sessionContext>

 <urn:sessionID>AIgw3Rpn0WpyIvVZrgQLYOAhGXpSegMFhHjZTdXyp9YbQCLLxNYD!-258797612</urn:sessionID>

 <urn:expires>300</urn:expires>

 </urn:sessionContext>

 <urn:navigationalState>primerRemote1_symbol=PINC&primerRemote1_value=20.04</urn:navigationalState>

 </urn:updateResponse>

</urn:performBlockingInteractionResponse>

Message 16: PerformBlockingInteractionResponse

The following diagrams represent these kinds of interactions.

[image: image2.wmf]Consumer

Get Markup (with default mode/state)

Markup

Producer

Perform Blocking Interaction (with form data)

Navigational state and/or new mode and/or window state

User requests for a portal

page containing a portlet

Rewrite

Portal page with portlet

markup

User submits a form in

the portlet

Collect form data

Process

form data

Get Markup (with navigational state, mode, window state)

Markup

Portal page with

updated portlet markup

Rewrite

Consumer

Get Markup (with default mode/state)

Markup

Producer

User requests for a portal

page containing a portlet

Rewrite

Portal page with portlet

markup

User clicks on a link in

the portlet markup

Get Markup (with interaction state, mode, window state)

Markup

Portal page with

updated portlet markup

Rewrite

Collect form data

5.5.1 Using InitCookie

Managing persistent state includes managing cookies. While the producer is responsible for managing its own environment, it is useful in some instances, such as load balancing, for the Consumer to assist in initializing cookies. (The requiresInitCookie field only occurs in the specification in Section 6.4 The initCookie() Operation, so it is assumed that it is an extension of the RegistrationContext, so I think we need to discuss how much to put into this section in regard to session v. persistent cookies.)

For example, before the getMarkup for Message 14 the following InitCookie could have been sent to the Producer.

<<urn:initCookie xmlns:urn="urn:oasis:names:tc:wsrp:v1:types">

 <urn:registrationContext>

 <urn:registrationHandle>CIncRegnHandle</urn:registrationHandle>

 </urn:registrationContext>

</urn:initCookie>

Message 17: InitCookie Request

<urn:initCookieResponse xmlns:urn="urn:oasis:names:tc:wsrp:v1:types"/>
Message 18: InitCookie Response

The following diagram shows updating persistent portal state, using InitCookie()

[image: image3.wmf]Consumer

Init Cookie

Cookies (when HTTP binding is used)

Producer

User requests for a portal

page containing a portlet

Initializes

session

User sesison ends

Release session

Subsequent calls include cookies

(when HTTP binding is used)

5.5.2 Releasing Sessions

As with cookies, and as shown above, it can be useful for the Consumer to inform the Producer that it will no longer be using a set of sessions by invoking releaseSessions(). This requires specifying the registrationContext and sessionID(s). The Consumer must not include any of supplied sessionID(s) on subsequent invocations.
5.6 Modes and Window States

The Markup Interface is used in five “Modes:” Modes refer to the specific ways in which the Consumer manages the interaction with the End-User. Portlets specify what Modes are supported in PortletDescription.The Consumer indicates the Mode to the portlet during getMarkup() and performBlockingInteraction() invocations using the MarkupParams data structure. Modes determine the administrative state of the portlet, i.e. how it is being used such as getting help using the portlet or modifying the display of the portlet , while Window States determine the relationship of the portlet to the overall page in terms of size or dominance.

“wsrp:view” Mode: This mode is expected to render markup reflecting the current state of the Portlet. This includes any interactions, personalizations and all forms of state available to the user. This mode is required since it is the expected default mode..

“wsrp:edit” Mode: This mode is expected to allow user to customize portlet behavior(s). Such state changes are expected to be persistent per portlet per user. This mode is optional.

“wsrp:help” Mode: This mode is expected to allow help screens to explain Portlet usage. This mode is optional.

“wsrp:preview” Mode: This mode is expected to provide a rendering of its standard “wsrp:view” mode content, as a visual sample of how this Portlet will appear on the End-User’s page with the current configuration. This mode is optional.

“wsrp:custom” Mode: The extensible RegistrationData structure provides a field for Consumers to declare additional custom modes. In addition, the extensible PortletDescription structure provides a field for Portlets to declare what modes they understand.

The Markup Interface is used in four “Window States:” Window state is an indicator or hint of the amount of page space that will be assigned to the Portlet.

“wsrp:normal” Window State: This state indicates the Portlet is likely sharing the aggregated page with other Portlets. This state may indicate device-specific display constraints. This state is required, as with the view mode, since this is the expected default window state.

“wsrp:minimized” Window State
: This state indicates that no visible state should be rendered, but non-visible data such as JavaScript or hidden forms is allowed and the getMarkup() operation may be optionally invoked, This state is optional.

“wsrp:maximized” Window State: This state indicates that the Portlet is the only or largest Portlet on a page.This state is optional.

“wsrp:solo” Window State:This state indicates that the Portlet is the only Portlet on a page. This state is optional.

Custom Window States: The extensible RegistrationData structure provides a field for Consumers to declare additional custom window states. In addition, the extensible PortletDescription structure contains a field for Portlets to declare what window states they understand.

5.7 User Categories

�Motivate the reader about interactions. Interactions require state changes. Motivate why there are two operations - getMarkup and performBlockingInteractionResponse. Why this is a single call in servlet /JSP?ASP programming models and why we need a two step process. Also mention bookmarkability. Why two calls, and the advantages to having. May mention why this is common in portlet programming.

�Also discuss why performBlockingInteraction is blocking. For state management, aggregation into pages, pushing state to browser etc.

�Better to have a separate (sub) section on state management. Also talk about persistent state and forward reference to portlet management interface.

�We can skip templates from messages. Just build the motivation.

Motivate and clarify different fields in messages.�

�Need to clean up messages.

�Message 12 is not valid. Need to make sure all messages are valid.

�Not clear. What is the state of the portlet?

�Inline the diagrams with the messages.

 Can not collect form data from render URLs.

 Spell-check

 Separate initCookie diagram for cookies and sessions

�Talk about different kinds of cookies. This concept is somewhat confusing.

�View and normal are required. Mention why?

�Need to motivate the notion of states and modes. How do consumers/producers may interpret different modes and states. Ex, minimized, maximized etc.

�getMarkup is optional for this state.

6

wsrp-primer-1.0
Web Services for Remote Portlets 1.0 Primer

Page 10 of 10

_1128401075.vsd

_1128401114.vsd

