1 Use Profiles

The purpose of use profiles is to provide a broad palette of functionality for Producers and Consumers. By qualifying a Producer or a Consumer implementation with a use profile palette, implementers can indicate the level of functionality supported. WSRP use profiles are non-normative, and should be regarded as general guidelines. Implementers will likely compose their implementation by selecting from a “palette” of functionality, and this section provides some guidance on how to map these use profiles across several functional axes. Refer to [http://www.oasis-open.org/apps/org/workgroup/wsrp/wsrp-conformance/download.php/3073/WSRP%20Use%20Profiles.doc] for a complete description of use profiles.
WSRP use profiles declare following levels for Producers:
a. Base Level: The Producer implements all the required elements of the WSRP Specification.
b. Simple Level: The Producer implements certain optional/advanced features besides whatever is required at the base level.

c. Complex Level: Complex level Producers may implement sever optional/advanced features of the WSRP specification.
The following are the use profiles for Consnumers:

a. Base Level: The Consumer implements all the required elements of the WSRP Specification.
b. Simple Level: The Consumer implements certain optional/advanced features besides whatever is required at the base level.

c. Medium Level: Medium level Consumers may implement sever optional/advanced features of the WSRP specification.
d. Complex Level: Complex level Consumers provided extended features (such as custom modes and window states).
An implementation can conform across potentially several different functional areas, offering advanced features in some areas while remaining “simple” or even “base” in others.

A Consumer and Producer have different motivations in achieving higher levels. A Producer need only implement the functionality required by the portlets it is offering. Unless a Consumer knows that it will only be consuming portlets from a Producer of a given level, it should provide all levels so that any portlet can function properly. The Consumer should not assume that there is graceful degradation of functionality if it does not implement certain functionality. For example, if a Consumer does not provide, say, registration, a portlet from a Producer requiring registration will not function at all.

Also note that there is not a one-to one correspondence with Producer Levels and Consumer levels; e.g. the base consumer level is expected to handle the initCookie operation, while the pase Producer level does not require this operation.

The following table illustrates some common scenarios that Producers and Consumers implement, and provides a mapping of those implementations to user profiles.
	Functionality/Use Case
	Notes

	Consumer Level
	Producer Level

	Implements all required interfaces
	The required interfaces are markup and service description interfaces. These interfaces are required so that the Producer and Consumer can offer some minimal level of portlet aggregation.
	Base
	Base

	Producer requires cookie initialization for markup operations
	Base level Consumer must honor the requiresInitCookie element of the service description of a Producer.
	Base
	Simple

	Support Consumer-rewriting of URLs
	Consumers should atleast support consumer rewriting of URLs. In our sample scenario, P Inc and C In rely consumer-rewriting for generating URLs and rewriting names in markup fragments.
	Base
	N/a [Base?]

	Support normal window state and view mode
	Producers must be able to support atleast one mode and window state. Normal window state (wsrp:normal) and view mode (wsrp:mode) are the defaults that Producers and Consumers must support. In our sample scenario, P Inc supports wsrp:view mode and wsrp:normal window state.
	Base
	Base

	
	
	
	

	Support “text/html” markup
	Producers must be able to support atleast one type of markup. The “text/html” type is the default markup type. In our sample scenario, P Inc. offers “text/html” markup.
	Base
	Base

	Support Navigational State
	Navigational state is one of the basic form of representing transient state of a portlet. In our sample scenario, P Inc includes the user supplied stock symbol and its value as the navigational state for C Inc to return with getMarkup requests.
	Base
	Simple

	Implicit or explicit cloning of portlets
	Base level Consumer and Producer does not support cloning.
	Simple
	Simple

	In-band Registration
	Base level Consumers cannot display portlets that require registration.
P Inc uses in-band registration.
	Simple
	Simple

	Session State
	For Producers, managing session state is optional. But Consumers must support sessions to guarantee a basic level of aggregation of portlets. In our sample scenario, P Inc manages session state.
	Base
	Simple

	Markup Caching
	Producer supplies a cacheControl element to indicate Consumer whether it can cache the markup.
	Simple
	[?]

	Support Standard Modes
	wsrp:edit, wsrp:help, and wsrp:preview modes. P Inc uses standard modes.
	Simple
	Base

	Support Standard Window States
	wsrp:maximized, wsrp:minimized and wsrp:solo window states. P Inc uses standard window states

	Simple
	Base

	User Information (contextKey and auth type)
	Base level Consumers cannot assume that portlets that require user information will degrade gracefully

	Simple
	

	Caching validation
	Use validateTag field of MarkupParams
	Complex
	Complex

	Grouping of Portlets
	Producers could group portlets to allow portlets in a group share transient/persistent state. Refer to Section 3.8 of the WSRP 1.0 Specification for details.
	
	Complex

	Persistent local state
	Producers could manage persistent state locally and not return portletState registrationState. In our sample scenario, P Inc is capable managing persistent state locally.
	
	Complex

	Out-of-band Registration
	Complex level producers could allow out-of-band registration by creating a registrationHandle by other means than the register operation.
	
	Complex

	Producer Writing
	For Producer to be able to create URLs, Consumer submits URL templates. In our sample scenario, P Inc does not support producer-writing of URLs
	Complex
	Complex

	Multiple Markup Types
	Producers could support markup types other than text/html (e.g. text/wml). This would allow Consumers to provide portlet aggregation for various devices and non-browser environments.
	Complex
	

	Localization
	Producers may be able to supply localized values for resources such as names, descriptions etc. In our scenario, P Inc supports en and en-US locales. A complex Consumer would support multiple locales.
	Complex
	

	Portlet Management Interface
	Consumers can use the portlet management interface to explicitly manage persistent lifecycle of portlets. Consumer may create a user interface for property management using this interface.
	Complex
	

	User Categories
	Producers may be able to personalize portlet markup/behavior based on user categorization. Producers and Consumer typically agree on (out-of-band) the semantics of user categories.
	Complex
	Complex

	Supports Custom Modes
	e.g a print mode
	Complex
	?

	Supports Custom Window States
	e.g. a half-page mode
	Complex
	?

�Could you elaborate? Not clear.

