OASIS WSIA Technical Committee

Requirements Document
Use Case Report: Embedded Producers

Version <1.2>

Revision History

	Date
	Version
	Description
	Author

	05/Mar/2002
	1.0
	Aggregated Producer
	Dan Gisolfi, Graeme Riddel, Alan Kropp, Eilon Reshef, Gil Tayar, Rex Brooks, Ravi Konuru, Keven Brinkley, Aditi Karandikar, Monica Martin, Rich Thompson, Charlie Wiecha

	06/Mar/2002
	1.0
	Renamed to Embedded Producer
	Charlie Wiecha

	20/Mar/2002
	1.1
	Updated flows, added requirements section
	Rich Thompson

	22/Mar/2002
	
	Added requirements
	Charlie Wiecha

	25/Mar/2002
	1.2
	Added requirements
	Rich Thompson

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

21.
Definition of the Embedded Producers use case

1.1
Brief Description
2
2.
Actors
2
3.
Flow of Events
2
3.1
Basic Flow
2
3.2
Alternative Flows
3
4.
Diagrams
4
4.1
Relationship between Producers and Consumers in the Embedded Producers Use Case
4
4.2
< First special requirement >
4
5.
PreConditions
4
5.1
< Precondition One >
4
6.
PostConditions
4
6.1
< Postcondition One >
4
7.
Requirements
4
7.1
Lifecycle:
4
7.2
URL rewriting
5
7.3
Authentication / security
5
7.4
General
5
7.5
ServiceDescription:
5
7.6
Property management:
6
7.7
Output:
6
7.8
User interaction:
6
7.9
WSIAPersistent:
6
7.10
Basic Look and Feel Adaptation:
6

Use Case Report: Embedded Producers

1. Definition of the Embedded Producers use case

Definition: Control over selection, configuration, placement of Producers within a Consumer is under manual (i.e. either Administrator or End-user) control. Producers do not publish an interface to the Consumer other than for invocation with generic arguments (not Producer specific). Arguments may include, among other things, user profile, output markup preferences, language, and device preferences. Producer specific configuration is via separate edit pages, i.e. not reflected in the Producer's interface.

1.1 Brief Description

2. Actors

There are three actors in this use case:

· Producer: one or more WSIA web services

· Consumer: a container which instantiates and controls interaction with one or more Producers on behalf of End-Users

· Consumer Administrator: a person who instantiates and configures Producers in one or more Consumers on behalf of End-Users

· End-User: a person who interacts directly with the output of the Consumer

3. Flow of Events

3.1 Basic Flow

While the following discussion is in terms of “portlets”, these should be viewed as a special (and common) case of embedded WSIA services where the Consumer is a portal. This use of portal oriented terminology is for clarity and not intended to restrict the set of actors to the special cases of portals and portlets.

3.1.1 Admin created portlets

[Traveler's checks] Travelers Checks applications as-is within a corporate portal
[Portlet] Consumer Administrator finds remote portlet service in UDDI, places portlet on a page for all users, uses the portlet’s edit mode to configure the portlet for the Consumer’s page, persistently saves the configured portlet. End-User accesses page and views/interacts with displayed output.

· Pages should be cached to reduce load on remote portlet service.

· End-user entered data is transferred to remote portlet imbedded in parameters or properties of the portlet.

· To facilitate the correct mapping of an End-User interaction to the correct instance of a remote portlet, the URLs contained in the page must be rewritten to both refer to the Consumer and provide it with the information necessary to map the interaction to the properties / operations of the correct remote portlet. One possible means to enable this URL rewriting include:

· Producer marks all interaction URLs (distinct from reference URLs such as on an in XHTML) with a prefix of “wsia:”. This makes it unambiguous to the Consumer which URLs need to be rewritten.

· Insert an additional parameter (preferably of a well known name such as wsia:mapKey) that will enable the Consumer to locate the correct record in some internal mapping table. This is essential if the Consumer is to correctly identify the Producer for redirecting the interaction.

· The Consumer may also wish to change the operation name to reflect the need to pass through the remapping logic. [OR do the WSIA portTypes want to explicitly expose such an operation and standardize its signature?]

· [Is there any utility in defaulting the operationName to invokeAction (from WSXL)?]

· User profile transferred to remote portlet in parameters or properties.

· Markup type configured by the Consumer at page load time based on End-User profile or device type in use by the End-User.

3.2 Alternative Flows

3.2.1 End-user created portlets

[Portlet] End-user locates a portlet in UDDI or through a search implemented by Consumer, places portlet on a page, optionally uses portlet’s edit mode to configure its output, persistently saves the configured portlet. End-user accesses page and interacts with displayed output.

· The Consumer Administrator may restrict the set of portlets available for placement on a page even when the search is implemented via UDDI. This enables the Consumer Administrator to manage any business issues related to the portlet’s usage.

3.2.2 Output type configurable for different devices

[Multimedia sports portal, Mortgage center] Consumer must indicate to the Producer the device (mime?) type extracted from the End-User connection. Preference would be for this to be a well-known property of all Producers [Perhaps there are a set of these … all using a ‘wsia:’ prefix].

3.2.3 Non-persistent remote portlets

[Portlet] Flow as 3.2.1 above, but with no persistence at the Producer. Configuration state returned to the Consumer for persistent storage. The Consumer is then responsible for supplying this information on any subsequent connections to the Producer.

4. Diagrams

4.1 Relationship between Producers and Consumers in the Embedded Producers Use Case

[image: image1.png]Producers

WSIA Runtime

? <
@ HTTP WSIA F‘
WSIA Application | (SOA Proxy,

i
WSIA Runtime)

= wsia Lid
A | [Py

A HTTP

(s0A

Wsia Application | F) | WSIA Application

WSIA Runtime

[—>
HTTP
(HTM

Users

3 e B
10 to oo [l
ay

Travelers
Check

5%
‘i_':‘_W i

Stock

Applcation

A | g |

4.2 < First special requirement >

5. PreConditions

[A precondition (of a use case) is a textual description of any constraints or dependencies that must be satisfied prior to entry of the use case.]

5.1 < Precondition One >

6. PostConditions

[A postcondition (of a use case) is a textual description of any constraints or dependencies that must be satisfied after termination of the use case.]

6.1 < Postcondition One >

7. Requirements

7.1 Lifecycle:

7.1.1 Both component and collection type services need to manage their Lifecycle and provide Consumers with means to refer to particular instances in subsequent calls (This need is related to the stateless character of WSDL services and should be supplanted with WSDL support for stateful services when that support becomes available). We therefore introduce the concept of a 'Handle' as a remote opaque reference to an instance of the service (though an implementation may choose to make this a reference to the equivalent of session data) and define basic operations to create, and destroy those instances.

7.1.2 It must be possible to operate WSIA services in a stateless manner as well as stateful. Stateless WSIA services may always return the same Handle from the create operation and will ignore any Handle passed in throughout the remainder of the operations.

7.1.3 Explicit creation of handles is not required. Handles may be created implicitly on requesting output for the first time. Such a handle will be returned along with the output in the response message. While this reduces the overhead of the create / destroy operations, it also requires the Consumer to send a complete set of properties on each operation invocation in order to deal with the possibility that the Producer may have used a timeout to clean up the underlying object. [How does the Producer indicate use of the implicit lifecycle semantics?]
7.2 URL rewriting

7.2.1 URLs need to refer to the Consumer in order to allow the correct state and indirections to be applied when processing an interaction from an End-User. Possible means for accomplishing this include:

· Producer modifications during markup generation based on Consumer supplied information [How does the Producer indicate it is willing to make these modifications? Support for a wsia:BaseURL property?]. The Consumer would need to supply the base URL for referring to itself in a manner that allows for remapping user interactions back to the correct Producer. The Producer would then append information onto this base URL indicating how the interaction should be mapped to it (operationName should use a well-known parameter name such as “wsia:opName” [default value of “invokeAction”?]) and any additional parameters that the operation requires [Are opaque operations allowed to have parameters, or do they just act on the ‘current state’ of the service with an update to the service’s properties being carried with the call?].

· Consumer applied modifications. In this case the Producer marks all interaction URLs (distinct from reference URLs such as on an tag in XHTML) with a prefix of “wsia:”. This makes it unambiguous to the Consumer which URLs need to be rewritten.

· In both cases there is a need to insert an additional parameter (preferably of a well known name such as wsia:mapKey) that will enable the Consumer to locate the correct record in some internal mapping table. [Does this need introduce a problem for multiple tiered chains of Producers/Consumers using the Producer modifications means?] This is essential if the Consumer is to correctly identify the Producer for redirecting the interaction when it arrives from the End-User. The Consumer will need to store any and all information in this mapping table that is needed to invoke the correct operation on the correct Producer.

7.3 Authentication / security

Other standards efforts are underway for the purpose of defining security and authentication protocols for XML and web services. While WSIA will need to be concerned about these issues, it is expected that concern will be addressed by tracking the work of these other efforts.

7.4 General

7.4.1 Export one or more component interfaces that expose enough information to enable adaptation, aggregation and integration while still allowing the application to evolve.
7.4.2 Do not preclude that applications will be built out of separate presentation, data, and control components using refinements of this embedded level of interface; this helps developers to separate design issues that if left intermixed in more monolithic objects would make integration for re-use in multiple channels more difficult.
7.4.3 To ensure a fit with existing web-based application architectures, generate markup that can be used by conventional browsers and devices through existing formats and protocols.
7.4.4 To ensure markup fragments may be aggregated onto a single page, define markup restrictions for common markup types. Note that the potential to republish makes this a recursive issue and that the “wrapper” around the composable markup fragment may not be applied until the tier directly communicating with the End-User’s device.
7.5 ServiceDescription:

This category of interface provides basic inquiry operations that allow a client to:
7.5.1 Request the WSDL service description document (particularly useful when the service was not discovered through UDDI)
7.5.2 Inquire whether or not a particular portType is supported.
7.6 Property management:
7.6.1 A WSIA component must implement property management operations whereby Consumers can modify properties at times other than initialization. Should a simple form of property management -- perhaps to read and write a fixed set of config properties -- be defined here, and leave the extensible property management requirement for the Customized case?
7.6.2 A Producer must specify its supported properties (including that particular properties are readonly). Preferrably this is done through a schema definition of the supported properties.
7.6.3 Define a set of WSIA properties:
7.6.3.1 wsia:output/wsia:deviceType
7.6.3.2 wsia:output/wsia:contentType
7.6.3.3 wsia:output/wsia:supportedContentTypes (from WSRP)
7.6.3.4 wsia:output/wsia:supportedModes (from WSRP)

7.6.3.5 wsia:baseURL

7.6.3.6 wsia:cssStylesheetURL
7.6.3.7 wsia:user/wsia:locale (from WSRP)
7.6.3.8 wsia:user/wsia:preferredCharacterSet (from WSRP)

7.6.3.9 wsia:cacheable (from WSRP)

7.6.3.10 wsia:supportsQueuedOperations (does this get added by another use case?)
7.6.3.11 wsia:versionNumber
7.7 Output:
7.7.1 Operations related to generating the markup for the service. Returns an opaque representation of the object's output.

7.7.2 Consumers must inform Producers of the desired output type. Preferred technique is through a WSIA defined set of properties (deviceType, mimeType, …).
7.8 User interaction:

7.8.1 Operations related to handling actions originating from the end-user. This is a single, generic, action operation for all user interactions.
7.9 WSIAPersistent:

7.9.1 Optional portType that enables full WSRP interoperability, providing operations to create and destroy persistently stored configurations.
7.10 Basic Look and Feel Adaptation:

7.10.1 Define a set of CSS classes that may be referred to by a Producer to cause output to fit the look and feel defined by the Consumer.
7.10.1.1 wsiaBackgroundColor

7.10.1.2 wsiaForegroundColor

7.10.1.3 wsiaFont

7.10.1.4 ...
7.10.2 Define a standard property that allows a Consumer to specify the CSS stylesheet specifying the Consumer’s values for the standard classes. This allows a Producer to generate the correct markup for browsers/clients that do not support CSS.

