WSRP Interface Specification
Version 1.0
0/0/0000

WSRP Interface Specification
Version 1.0
Revision History

Please use change marks if adding comments to this document.

	Date
	Version
	Description
	Author

	5/21/2002
	1.0
	Initial Draft
	Dr. Carsten Leue

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

41.
Goals of this Document

42.
WSRP Overview

42.1.
General Interface Design Issues

5Handles

5Batch Processing

5Data Objects

62.2.
Life Cycle States

6Assumptions:

6State 0: Portlet Service Unknown

6State 1: Portlet Service Known

7State 2: Portlet Service Active

73.
WSRP Interfaces

73.1.
Service Description

93.2.
Life Cycle

9Registering the consumer and producer

10ClassID

10ConsumerName

10Creating templates and instances

11Sessions

11Destroying entities

123.3.
Markup Retrieval

123.4.
Action Processing

123.5.
Properties

124.
WSRP Protocol

124.1.
URL Encoding

124.2.
Namespace Encoding

124.3.
Markup Fragments

124.4.
Metadata

125.
Security

126.
Samples

126.1.
Sample WSRP Client

126.2.
Sample WSRP Server

127.
Acronyms

1. Goals of this Document

This document is intended to be a first draft of an interface and protocol specification for the OASIS “Web Services for Remote Portals (WSRP)” standard. The proposed interfaces are by no means final but subject to further discussion and refinement. I tried to merge what has been agreed upon from the various email threads.

Within the document there are cross references to the requirements document that indicate which requirement has been satisfied by which API.

2. WSRP Overview

Web Services for Remote Portals (WSRP) are visual, user-facing web services centric components that plug-and-play with portals or other intermediary web applications that aggregate content or applications from different sources. They are designed to enable businesses to provide content or applications in a form that does not require any manual content- or application-specific adaptation by consuming intermediary applications. As Web Services for Remote Portals include presentation, service providers determine how their content and applications are visualized for end-users and to which degree adaptation, transcoding, translation etc may be allowed.

WSRP services can e.g. be published into public or corporate service directories (UDDI) where they can easily be found by intermediary applications that want to display their content. Web application deployment vendors can wrap and adapt their middleware for use in WSRP-compliant services. Vendors of intermediary applications can enable their products for consuming Web Services for Remote Portals.

Using WSRP, portals can easily integrate content and applications from many internal and external content providers. The portal administrator simply picks the desired services from a list and integrates them; no programmers are required to tie new content and applications into the portal.

To accomplish these goals, the WSRP standard defines a web services interface description using WSDL and all the semantics and behavior that web services and consuming applications must comply with in order to be pluggable. In addition the standard details on how information describing the service can be acquired: as meta-information that has to be provided when publishing WSRP services into UDDI directories or via self-explanatory services.

The standard accounts for the fact that WSRP services may be implemented on very different platforms, be it as a Java/J2EE
 based web service, a web service implemented on Microsoft's .NET
 platform or a portlet published as a WSRP service directly by a portal. Special attention has been taken to ensure this language independence. The standard enables use of generic adapter code to plug in any WSRP service into intermediary applications rather than requiring specific proxy code.

WSRP services are WSIA
 component services built on standard technologies including SOAP
, UDDI
, and WSDL
. WSRP adds several context elements including user profile, information about the client device, locale and desired markup language passed to them in SOAP requests. A set of operations and contracts are defined that enable WSRP plug-n-play with WSIA components.

2.1. General Interface Design Issues

The major design goals of the WSRP specification are simplicity and extensibility and efficiency. This section summarized general design issues for WSRP interfaces.

Handles

In many cases it will be necessary to represent objects or data structures that reside on the provider side as opaque identifiers to the consumer. Such identifiers will be referred to as handles. The structure of a handle will be managed by the provider; we assume that a handle can be represented as a string.

The semantics and meaning of handles is subject to this specification.

To allow efficient processing (especially batch processing) and still allow as much type consistency as possible, handles that refer to different logical data types are represented by different handle types that share a type hierarchy. Such a type hierarchy allows specialized methods to take specialized types and general purpose methods (like destroyHandles) to take super-types for batch processing. It is then up to the provider to defer the correct entity type from the handle.

	Handle Type
	Parent Type
	Meaning

	handle
	none
	general purpose handle

	entityID
	handle
	handle representing a logical entity, transient or persistent

	transientID
	entityID
	handle representing a transient entity

	templateID
	transientID, persistentID
	handle representing a template

	persistentID
	entityID
	handle representing a persistent entity

	portletID
	persistentID
	handle representing a portlet instance

	portalID
	handle
	handle representing the result of a registration process

	sessionID
	transientID
	handle representing a session

Batch Processing

WSRP defines an interface and protocol that runs in a web environment. Special care has to be taken already in the design phase that logical actions can be mapped efficiently to interface invocations. In a web environment the most time consuming operation is the invocation of a method call itself, the size of the payload only plays a subordinate role. The interface has therefore to be designed primarily to minimize the number of method invocations to perform an operation.

Batch processing is an easy way to minimize roundtrips: instead addressing individual entities with a single method invocation the interface allows addressing sets (vectors) of common types. The provider can then decide how to most efficiently process the whole chunk in a single roundtrip (e.g. by exploiting server side parallelism).

As a result the WSRP interfaces take parameter lists rather than single parameters.

Data Objects

It is often necessary to pass properties to methods. Wherever possible WSRP will define typed data object as the transport mechanism of such data in contrast to untyped parameter lists. Parameter lists will only be defined for portal vendor specific data extensions.

In order to allow extensibility of any data object we define a base class for all data objects that simply includes an untyped property list.

WSRPProperty {

String name;

Object value;

};
Members:
name
Name of the property, must not be null

value
Any representation of the property’s value. The interpreter is responsible for determining the correct value type.

WSRPPropertyList {

WSRPProperty properties[];

};
Members:
properties[]
List of WSRP properties. The list is open ended and may be null. There is no guarantee that the names of the properties included in this list are unique. [R357][R360]

WSRPDataObject {

WSRPPropertyList
properties;

WSRPDataSecurity
security;

};
Members:
properties
Property list, may be null.

security
Data object that indicates if the data of the WSRPDataObject is encrypted or signed. This information applies to the (optional) properties member as well as to all additional data members that are defined in subclassed data objects. The security field is optional. If it is null the data is not secured.

Keys that are required to encrypt/decrypt the data have already been exchanged during the registration process between the consumer and the producer and are not part of the security field. [R402][R409][R410][R414]

More specialized data objects are defined in conjunction with the method signatures.

WSRPDataSecurity {

String algorithm;

String data;

};
Members:
algorithm
Identifier indicating the security algorithm (signing, encryption, CRC) [R414] to be used. The algorithm must match one of the algorithms the provider advertises to understand in the describeService call. The list of supported algorithms is detailed in the security subsection.

data
Additional data required for the receiver of the data object to ensure data integrity and security. This could be a digital signature, a CRC or some other algorithm specific data blob.

2.2. Life Cycle States

Assumptions:

The portlet service is a container for one or more portlets. How a portlet is implemented is defined by this container not by WSRP. WSRP however strongly influences the model conveyed by the portlet service [container] to its portlets originating requests from the portal are transported through it.

State 0: Portlet Service Unknown

The portal has no knowledge that a portlet service exists. From this state the portal transitions to a known state through a process of discovery. Discovery is the process of learning the location address of the portlet service. The location address of a portlet service is the URL of its WSDL service description.

State 1: Portlet Service Known

In this state the portal knows the location [and existence] of the portlet service. From this state the portal can [uninterestingly] transition back to the unknown state. Typically, however it transitions to the active state through a process called registration. Additionally, this is the state at which the portal can request a portlet service to describe itself. This later ability is present through all states until it returns to unknown.

State 2: Portlet Service Active

Most of the interesting things happen while the portlet service is in the active state. This is where users can interact with the portal to (indirectly) operate on portlets.

3. WSRP Interfaces

This section describes the proposed WSRP interface methods and explains the contract between the methods.

3.1. Service Description

WSRP services (providers) have the ability to describe themselves at runtime. Consumers may use this self-description mechanism to query basic information about the provider (type, name, etc) together with information they need to register themselves with the provider. The usage of the self-description methods is optional; the provider is free to publish this information (or parts of it) as static metadata to registries (e.g. UDDI registries) [R300] [R301][R303].

(WSRPPortalDesc desc) describeService(portalID hReg);
In:
hReg
Handle of the registration. This may be null. Depending on the registration handle the provider can decide how much information it wants to expose to the caller [Q302]. The provider must at least provide enough information to allow a registration to be initiated. [R301]

Return:
desc
Description of the service.

WSRPPortalDesc extends WSRPDataObject {

URL

wsilDesc;

String[]

authMechanisms;

String[]

securityMechanisms;

PublicKey

publicKey;

WSRPService[]
services;

WSRPPortlet[]
portlets;

};
Members:
wsilDesc
Reference to the WSIL
 description document of the service. The WSIL description allows the consumer to find out about interfaces the provider exposes by linking to WSDL documents. This field may be null in which case the consumer can assume that the provider exposes at least the WSRP interfaces with no further extensions. [R304]

publicKey
The provider’s public key
 the consumer can use to encrypt subsequent messages (if necessary) do ensure data security. The structure of this field has to be defined in the security section. [R404]

authMechanisms[]
List of authentication mechanisms the provider supports register a consumer. The list of possible authentication algorithms is defined in the security section of this document. This field may be null, indicating that the provider does not require authentication.

securityMechanisms[]
List of security algorithms the provider understands and that can be used to secure data objects. The list of available algorithms is detailed in the security subsection.

services[]
List of services the provider supports in addition to WSRP. The list may be null or empty. [R304][R357]

portlets[]
List of portlets the provider exposes. The provider may choose not expose this information or only parts of this information based on the registration ID.

WSRPPortlet extends WSRPDataObject {

String
classID;

String
serviceName;

String[]
locales;

String[]
titles;

String[]
descriptions;

Integer[]
modes;

String[]
markups;

Bool

cachability;

Bool

instanceAwareness;

String[]
keywords;

Integer[]
viewStates;

String[]
roles;

};
<mc> As I read this, a portlet would have a single propertylist since WSRPPortlet extends WSRPDataObject(which consists of a propertylist and datasecurity object). If so, that would seem to imply that security is an all-or-nothing proposition for a portlet’s property set. We had called out in security requirements that security could apply to a subset of a portlet’s properties, implied in R411. I’m open to further discussion if we need a finer-grained security mechanism than all-or-nothing. It may be that what is specified here will suffice, but my guess is that we’ll have some debate on this </mc>
Members:
classID
Unique identifier for the portlet in the scope of the portlet service.

serviceName
The name of the WSRP Service, e.g. “Stock Quote Service”

locales[]
The list of locales supported by the service.

titles[]
Titles of the service in all the locales that the service supports

descriptions[]
Descriptions of the service for all supported locales

modes[]
The modes that are supported by the service, e.g. view, edit, config, help. Mode constants are defined in the appendix.

markups[]
The different markup languages supported by the service, e.g. HTML, XHTML, WML, VoiceXML, cHTML, …

cachability
Information on how caching may be applied, including expiry times and indication on whether content is personal or shared.

instanceAwareness Indicates whether the service is aware of portlet instances, i.e. has instance specific behavior

keywords[]
Key words describing the service which can be used for search

viewStates[]
Minimized, Normal, Maximized, …

roles[]
List of roles the portlet can manage. The portlet can freely define any role it wants, however there exists a set of predefined roles in the markup section. [R416]

(The complete list will have to be worked out by the markup subcommittee and will have to be in sync with the description that goes to UDDI directories).

WSRPService extends WSRPDataObject {

URL

wsilDesc;

};
Members:
wsilDesc
Reference to the WSIL description document of the service.

3.2. Life Cycle

Registering the consumer and producer

Registration describes the transition between portlet state 1 (known) and state 2 (active), the consumer actively establishes a relationship between the consumer and the provider. All subsequent interactions with the provider take place within this relationship. Both consumer and provider are free to end this relationship at any time. The consumer must explicitly call the destroyHandles method for this purpose, whereas the provider may silently end the registration by invalidating the registration identifier.

Establish Business Relation

In order to prepare for the following steps to be executed automatically on the technical level and obtain a credential to be used to establish a relationship. The owner/administrator of a consumer may for example contact the owner/administrator of the producer, sign a contract and as a result obtain a customer number and password (low security) or a customer number and digital certificate (high security).

For free services, no credential at all might be required. [R354]

Establish (technical) Trust Relation

After establishing a business relationship the consumer can register itself with the provider. It passes the information (certificate) received while establishing a business relationship to identify itself. The certificate and authorization procedure must match one of the procedures that are handed back by the describeService command.

The producer determines whether the credential(s) provided by the consumer are sufficient. If so, the producer assigns a portalID and sends it back to the consumer for later reference. Otherwise it indicates that credentials are missing and information on how/where to obtain these credentials (as a SOAP error). [R363][R350][R352]

The producer must not deny registration based on (missing) consumer based services to maximize the interoperability between portal implementations. [R358]

(portalID hRef) registerClient(portalID hOldRef,WSRPConsumer consumer);
In:
hOldRef
An already existing registration ID or null. If no registration ID is present the producer will create a new one based on the security and identity settings in the consumer data object. If there is already exists a registration the provider updates the registration information. [R353]

consumer
Data object identifying the consumer that wants to register with the provider.

Return:
hRef
ID that uniquely identifies the registration within the provider’s context. [R362]

The consumer can use the destroyHandles method to un-register from the provider. After destruction of the registration handle all transient and persistent instance handles created in the context of the registration become invalid. [R500][R501][R503] The consumer is free to register again after unregistering.

The consumer must persistently store the registration ID.

One consumer can register itself multiple times with potentially different security settings. [R351]

WSRPConsumer extends WSRPDataObject {

String
consumerName;

String
vendor;

String
authMethod;

String
credentials;

PublicKey
publicKey;

WSRPService[] services;
// is this really required?

};
Members:
consumerName
Globally unique name that identifies the consumer. [R355]

vendor
Name and version of the portal vendor. [R356]

authMethod
Authentication mechanism that corresponds to one of the authentication mechanisms from the list in describeService.
(e.g. public key, basic auth, no auth, etc, needs to be defined in more detail in the security part).

credentials
A token that has been acquired during the establishment of the business relationship and that corresponds to the authentication mechanism. The concrete form of these credentials is defined on a per-algorithm basis in the security subsection.

publicKey
The public key of the consumer the provider can use (if necessary) to verify the signature of the consumer. [R404]

services
List of services the consumer provides to the provider. This list may be null or empty. [R359]

To ensure security during the registration call the provider might offer this method over SSL with optional client certification. [R401] This is an optional behavior.

ClassID

The classID uniquely names a remote portlet within the scope of a portlet service. The concrete structure of this ID is not defined by WSRP, so it can be used by the provider to implement any level of naming hierarchy.

Examples:
wsrp/weather
human readable name

{8C1DC31C-653A-4ed7-8F96-B3A9DAD2A02E}
COM class ID

1243
server specific hash value

ConsumerName

Name the consumer uses to identify itself to the provider. This name must be globally unique. WSRP uses the context root of the consuming portal for this purpose.

Creating templates and instances

WSRP distinguishes between templates and instance, both of which are persistent entities. Persistent means in this scope that the respective handles must be stored persistently by the consumer and must be destroyed explicitly using the destroyHandles method. Transient entities may be destroyed explicitly but will also time-out after a provider defined period of time.

A template represents a configured remote portlet “shadow” that is not associated to a specific user and does not appear on a page. It can be regarded as a design time entity that serves as a blueprint to create an instance from. The consumer can create a template explicitly by specifying its class identifier and a set of initial properties. I case the properties are missing or only some properties are specified on creation time the provider must supply default properties so the template is always in a well configured state. In order to minimize roundtrips it is possible to create multiple templates with one single method call.

(templateID[] created) createTemplate(portalID hReg, handle[] classIDs,Properties[] props);
In:
hReg
Handle of the registration. This handle will be ignored if one of the class IDs, specifies another template or portlet ID.

classIDs[]
List of portlet identifiers. The identifier is a provider internal ID that addresses the type of remote portlet to generate. The consumer finds this ID by e.g. by searching a UDDI registry. The classID must not be null.

The classID may also be a handle that has been returned by a createTemplate or createPortlet method call. In this case the returned handle will designate a new instance of a handle of the same class type as the input entity. The template will also be configured with the same properties as the input entity. If in addition there is a property object specified, its properties override the properties of the parent entity. After the creation of a template from a parent entity the resulting template and the parent are not linked.

props[]
List of properties for each classID. These properties are used to initialize the template. If the properties are missing or incomplete the provider must provide a set of default properties.

Out:

Return:
created[]
List of handles that represent templates. If the creation of one or more of the templates failed the appropriate entry is null. The size of the returned list must be equal to the size of the classIDs.

(portletID[] created) createInstance(entityID[] handles);
Sessions

Sessions between the consumer and the producer are auto initiated by the provider in the scope or a getMarkup or invokeAction method call. No method exists to explicitly instantiate a session. The session handle can be explicitly destroyed using the destroyHandles method. However the destruction of session entities is not required.

Destroying entities

The WSRP interface defines one single entry point to destroy provider side handles that have been allocated by creational methods. The server determines from the handle the appropriate object type to destroy. For efficiency reasons the interface method takes a list of handles to be destroyed and returns a list of handles that have actually been destroyed. This list may be smaller than the input list in which case some handles could not be deleted (e.g. because they are invalid). The list may also be larger than the input list if the provider decided to implement implicit deletion of subordinate entities (e.g. destroying a registration handle leads to the destruction of all associated handles on the server side).

(handle[] destroyed) destroyHandles(handle[] handles);
In:
handles[]
List of handles to be destroyed. It is not required that all handles in the list are of the same type, it is up to the provider to determine the correct handle type. The list may also be empty.

Out:

Return:
destroyed[]
List of actually destroyed handles. [R504] To make sure that all handles that have been passed as parameters have been deleted the caller must check if the difference set between the input and output set equals the input set.

3.3. Markup Retrieval

3.4. Action Processing

3.5. Properties

4. WSRP Protocol

4.1. URL Encoding

4.2. Namespace Encoding

4.3. Markup Fragments

4.4. Metadata

5. Security

6. Samples

6.1. Sample WSRP Client

6.2. Sample WSRP Server

7. Acronyms

� � HYPERLINK "http://java.sun.com/j2ee/" ��http://java.sun.com/j2ee/�

� � HYPERLINK "http://www.microsoft.com/net/" ��http://www.microsoft.com/net/�

� � HYPERLINK "http://www.oasis-open.org/committees/wsia/" ��http://www.oasis-open.org/committees/wsia/�

� � HYPERLINK "http://www.w3.org/TR/SOAP/" ��http://www.w3.org/TR/SOAP/�

� � HYPERLINK "http://www.uddi.org/specification.html" ��http://www.uddi.org/specification.html�

� � HYPERLINK "http://www.w3.org/TR/wsdl" ��http://www.w3.org/TR/wsdl�

� � HYPERLINK "http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html" ��http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html�, � HYPERLINK "http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-inspection.asp" ��http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-inspection.asp�

� � HYPERLINK "http://www.pgp.org/" ��http://www.pgp.org/�

� � HYPERLINK "http://lcweb.loc.gov/standards/iso639-2/langcodes.html" ��http://lcweb.loc.gov/standards/iso639-2/langcodes.html�

Page 1 of 1

