[image: image1.emf]

WSIA-Customization Requirements

Basic Model

R401

It should be possible for a Consumer to initialize the Producer with property data that is computed dynamically in run-time. (This is different from the Embedded case where all initialization is done off-line). [RK: this might be changing in the joint interface?]
Referenced scenarios: Memory store initializes Memory configurator requesting the images to be made smaller and some of the tab panes removed.
R402
It should be possible for a Consumer to set Producer property data during any user interaction, at defined points in the request lifecycle (see R411), not only at the initialization of the Producer.

Referenced scenarios: Health enrollment application, the consumer may want to achieve the effect of prefilling, by setting some properties based on user-input and requesting output. 2.2.1.
R403

It should be possible for a Consumer to receive property data from the Producer at the end of its interaction with the end user. (This is different from the Embedded case where no data transfer is available)

Scenario: memory configurator: The Reseller receives the chips selected from the memory configurator an displays them along with the stock inventory and an add-to-shopping cart button.

R404

It should be possible for a Consumer to read Producer property data during any user interaction not only at the initialization of the Producer.

[Scenario: Sports portal. Based on the driver selected in one Producer, the consumer may decide to show the car that is driven by that person.]

R405

Throughout the interaction with the end user, it should be possible for a Consumer to dynamically receive property data from the Producer, compute corresponding property data, and send the computed property data dynamically back to the Producer.

(This represents the data customization to the configuration problem. Eg. If a particular company is chosen as manufacturer, setting the property on the producer can result in computed property that is the list of Models, that is then used by the consumer).

R406

The Consumer should be able to send to the Producer property data that affects the Presentation Fragment generated. (And hence must be able to send the data before the presentation is transmitted).
[health scenario: subsetting the number of choices appearing on a screen]

R407

The Consumer should be able to receive from the Producer property data that depends on the last user action. (And hence must be able to receive the data after the action is performed). (And from R405 and R406, must be able to send the data after the action is performed, but before the Presentation is generated).

R408

The Consumer should be able to determine that property data has been generated by the Producer, and act accordingly. (This may be trivial in particular implementations)

R409

This specification shall define the meta-data that the Producer may publish about the property data mentioned above so that Consumers can effectively use the service. (We will need to discuss this: grouping, format and structure, inheritance, descriptions, access-control, inter-relationships. For each such piece of meta-data we need to assess multiple parameters that include value for Consumer, likelihood for being generated effectively, etc. We may also want to discuss whether there are any pre-defined properties specific to WSIA or pre-defined property types specific to WSIA.) Four tracks have been identified:
· Property’s meta information (type, constraints, etc)

· Property partitioning (to help in scoping the properties of interest)

· Special pre-defined property names that have specified semantics. Eg WSIA-State, a property that identifies the current state of the Producer.

· Delegation of property manipulation: The producer’s specification allows the consumer to manipulate a property without round-tripping to the consumer so as to improve response time. Two kinds of requirements have been identified for discussion:

· Producer defines “WSIA-Proxy” property that is used by the consumer to download and instantiate a specialized proxy.
· Producer defines a PropertyLocator as part of a property’s meta data that allows a consumer to extract and manipulate a property value that is located in the presentation/markup.

R410

It MUST be possible for a WSIA/WSRP Consumer to read and set a Producer’s property data multiple times during a single user interaction.

R411

This specification must define a processing model which explicitly sequences the lifecycle of a user request, including: optionally setting property values, executing user action(s), additional property setting operations, and finally output fragment generation. The side effects of action invocations and property settings on other properties must be returned to the Consumer on each operation.

R412

A WSIA/WSRP Producer MUST be able to receive and transmit incremental updates to its property data. Property changes MUST be described by metadata able to fully identify the mutation (value change, creation, deletion) of elements within its properties to each other.

R413

A WSIA/WSRP Producer MUST support metadata on its property values indicating their validation state. States must include: null, valid, error, and unknown.

R414

A WSIA/WSRP Producer MAY support metadata in addition to that specified in R411 such as default, input (entered by the user but not yet validated), read/only.

R415

Both the WSIA/WSRP Producer and Consumer MUST be able to modify the values and structure of the instance data within individual properties during run-time, according to the defined types of those properties. (Thus adding/deleting property data elements in addition to changing their values is supported, provided that those changes are still valid according to the schema of that property.)

R416

WSIA/WSRP Producers must support properties defined with both simple and complex data types.

R417

The preferred type language for specifying WSIA/WSRP properties is XML Schema.

R418

WSIA/WSRP Producers MUST support Incremental changes to the structure and values of complex-typed properties. Mutation metadata MUST be transmitted and received by the Producer to support incremental changes within complex type properties.

R419

Property metadata MUST indicate the scope over which each property is visible. Property scopes MUST include Consumer, Entity, Session, Request.

R420

Property data at all scopes must be accessible through a uniform mechanism, exposed on the Producer entity (rather than through separate property sets on Entity and Session).

XForms-Type Approach

1. A WSIA Producer MAY support Consumer-specified binding expressions for whether properties (or property substructures) are "required" or "relevant", conforming to the XFORMS "bind" constraints language and semantics. Binding expressions may only be provided by the Consumer at Producer instantiation time, though must be evaluated dynamically as their instance data changes.

2. A WSIA Producer MAY support Consumer-specified binding expressions for computing how properties (or property substructures) are related to each other, conforming to the XFORMS "bind" constraints language and semantics. Binding expressions may only be provided by the Consumer at Producer instantiation time, though must be evaluated dynamically as their instance data changes.

3. A WSIA Producer MAY support Consumer-specified binding expressions for restricting the valid types of property data (or property substructures) conforming to the XFORMS "bind" constraints language and semantics. Binding expressions may only be provided by the Consumer at Producer instantiation time, though must be evaluated dynamically as their instance data changes.

Architectural Questions

Do we want to have the “exit” concept explicit in the model? As in:

R420?

The Consumer should be able to determine that the Producer has completed the interaction with the user and determine the state under which the interaction was completed, and returned information.

R421?

A WSIA/WSRP Producer must be able to accept Consumer-specified binding expressions and modify its property data accordingly? How is the Producer to indicate which property data can be modified and in what way? Does this requirement (and the XFORMS ones above) imply a “property data adaptation language”?

What sub-scenario functions have been covered so far?

Memory configurator – by reading Producer property values for the manufacturer numbers and setting other property values for the Reseller number at the Consumer before output generation.

Availability – by reading Producer property values and editing those values at the Consumer to remove products which are not available. Alternatively, setting metadata on the property data indicating that some records are not to be displayed (which approach is preferred?)

Add to cart – user action is passed to the Producer which generates final property values, which are passed back to the Consumer in the return message from the action invocation. As in Eilon’s question above, do we distinguish any particular actions as “end states”? If so, how are they declared – in documentation, somehow in the WSDL, in an endpoint description?

Personal profile entry automation – by setting initial property values at Producer instantiation time. Whether to skip initial screens is a Producer design choice, perhaps with properties to allow the Consumer to indicate a preference.

Restricting plan enrollment choices – covered as in the availability scenario above – Producer generates instance data including all plans, Consumer removes those entries that are not required for its use. This decision can be based in addition on end-user specific data as in part 2 of this sub-scenario.

Sports portal – context sharing for selected indy car driver – in order to keep this as a Customization scenario, assume that the Consumer controls the UI for those elements outside of LiveIndy, i.e. there is only a single Producer. In this case, user interactions with LiveIndy return property changes as above which are then used by the Consumer to compute properties relevant to its own UI.

Sports portal part 2 – User interactions on the Consumer’s part of the UI may trigger property changes passed in addition to the LiveIndy Producer. The Consumer will then query LiveIndy for its regenerated output before building the entire page to be returned to the end-user.

Which of the above requirements are agreed vs. open?

