WS-Security Use Cases

Title: Federation Use Cases

Terse Description: Secure Web Service Messaging between two disparate entities, e.g. Different Companies or Different Divisions of the same Company

Version: v0.1

Submitted by: Don Flinn

Date: January 10, 2003

Summary

Two disparate entities communicate using SOAP secured by WS-Security. We’ll use the term Company A and Company B for the two entities in these use cases. The initiating clients at Company A authenticate to a proxy, Proxy A, at its company. Proxy A constructs a WS-Security header containing a SAML tokenand sends the SOAP message to Company B. A Proxy at Company B, Proxy B, receives the message, verifies the header, does coarse-grained authorization and sends the message to a Web Services target in the mid-tier, e.g. one or more ultimate SOAP Receivers. The ultimate receivers, using information in the token(s), carry out fine-grained authorization and allow or deny access.

Scope

Secure messaging using WS-Security with SAML tokens, in a federated scenario.

Participants

· Initiating Clients at Company A

· WS-Security enabled Proxy at Company A

· WS-Security enabled Proxy at Company B

· Ultimate receivers at Company B

Assumptions

· WS-Security is used to secure the message

· SAML attribute tokens are used

· Digital Signature is used in both the SAML token and to tie the token to the header.

· Use SOAP 1.1

Non-technical Factors

· There exist legal business agreements between the companies detailing the responsibilities of each company. For example, Company A is legally bound to correctly authenticate its clients and so on.

Primary Process Flow

[image: image1.wmf]Proxy

Company A

SOAP Request

Header

Body

SAML

Attribute

Assertion

SOAP Request

Header

Body

Proxy

Company B

SOAP Request

Header

Body

SAML

Attribute

Assertion

Company A

Company B

Client

Ultimate

Reciever

A Client at company A authenticates to its outbound proxy, Proxy A, using Basic Auth. Proxy A constructs a WS-Security header containing a SAML token. Proxy A digitally signs the token and the body and forwards the SOAP message to Proxy B. Proxy B verifies the signature and authenticates Proxy A based on the digital signature. It then does coarse-grained authorization of Proxy A, i.e. can Proxy A access Company B based on Proxy A’s user identity. Proxy B then sends the SOAP message to the ultimate receiver. The ultimate receiver verifies the signature, extracts the attributes from the SAML assertion and uses them to do fine-grained authorization on the SOAP body, i.e. the rpc and/or the document contents.

Key Points:
· Once signed, the SOAP body and SAML token may not be modified.

· The Proxy vouches for the initiating client by creating the SAML attribute assertions with the clients’ attributes.

· Proxy B authenticates Proxy A using the WS-Security digital signature.

· The ultimate receiver authorizes the rpc and/or the document using the SAML attributes as the subject of its access policy.

· There are multiple clients and multiple ultimate receivers from different vendors.

Variation 1: Direct Access

Same as the base use case except the client at Company A creates the SAML token in the WS-Security header. The client can speak WS-Security and SAML. The processing at Company B is the same as in the primary process flow.

Key Points:

· The client is WS-Security and SAML aware.

· Proxy A verifies the SAML signature and signs the header and body

· Proxy B verifies the signature as before

· Nothing changes at Company B

Variation 2: Attribute Authorities

This variation has the following modification from variation 1. The client uses an attribute authority to create and sign the SAML token. The client contacts the Attribute Authority and retrieves a SAML attribute assertion, creates the WS-Security header and inserts the SAML token. Client verifies to the Attribute Authority.

Key Points:

· The Attribute Authority is SAML aware.

· The client is WS-Security aware and is not SAML aware.

· No other changes from variation 1

_1103620781.vsd

