Questions concerning the model used for reasoning about complex SOAP paths and security operations for interleaving cases.
You write (in a context devoted to showing a certain decryption transform is not helpful, which is not something here contested)

“Suppose an entity wants to encrypt data that has been signed (presumably by another entity, but that does not matter for our purposes.) It could prepend to the existing header, but suppose it believes that the decryption and verification will be performed by distinct SOAP Roles. For the sake of example, let us assume 4 roles: S, E, V, D, each of which is capable of performing the corresponding operation: sign, encrypt, verify and decrypt. The roles may reside within 2, 3 or 4 SOAP nodes.”
The model suggested above is specialized in certain ways that suppresses some interleaving cases that should be considered. 

The general model is a SOAPPath of length N, where how long N needs to be is open, but probably after 4 or 5, no loss of generality occurs. There are some number R of actors/roles involved, including special roles such as “next”. There is some number of SOAP nodes involved, greater than 2 and less than or equal to N. There is some number of security operations, and we will go along with 4 as above, E,V,D, and S. [Notice performing operations and having a role should be distinguished.] Finally there is some number of wsse SOAP header blocks that can be added or removed and which will, with some loss of full security level generality, be assumed to be added/removed according to the rules of the SOAP processing model. There needs to be more than one wsse block involved for interesting interleaving cases.
So an interleaving example occurs when, say, a wsse header is added by a first node, A, in which there is an S operation followed by an E operation over some part of S’s plain text. Then suppose a second subsequent node B adds a distinct wsse header that signs over a region that includes, for example, the encrypted region as well as other regions, possibly even ones not signed over by A. It then encrypts an element within what A had signed over, but not encrypted.
Now suppose we have a V node that both wsse nodes have targeted. 

Can the V operation be reliably carried out while looking at each wsse block independently? Or must the sequence in which the headers were added be known? The sequence needs to be known iff an interleaving problem arises.

Going back to the original example, suppose a node C, targeted by both A and B’s wsse header blocks, looks first at A’s signature. B’s encryption was not known or listed in A’s block. So even if there is decryption of what A had encrypted, the signature check will fail because of the encryption added by B to a region signed over by A.
Thus interleaving is a problem that can arise with greater than one wsse header block, a SOAP Path of length 3, and with allowable operations as mentioned above.

My question is how the interleaving cases are to be resolved.
RESERVED for later comment

However, there is simpler approach. All we need to do is add a special rule that says if you are verifying a signature and you come across a DT that points to a non-existent encryption, assume it is already done and proceed with the verification. (If your assumption is wrong, the verify will fail.)

All of this was an amusing exercise, but in fact quite useless! No Role can do decryption unless it knows the key. The D and V Roles have no way to route the messages to each other and get them back. Ignoring the fact that in general sharing a long term secret among multiple nodes is a bad security practice, if the V Role can do decryption, why bother to have the D Role at all? I can see no sensible usecase where it is not necessary to simply assume that the routing will have to allow the operations to be performed in the correct order. If not, the verification will fail and the routing will have to be corrected, the DT will not solve the problem.

Note that this actually applies to all three cases: super-encrypt, encrypt & sign and sign & encrypt. Incorrect routing will cause either verification or decryption to fail (although failed decryption might be harder to detect) and there is nothing WSS can do about it.

Therefore my conclusion is that we might as well prohibit the use of the DT in signatures in security headers, since they are never useful and require work to support. Of course if applications want to send signed objects in SOAP bodies or attachments, that is their business and outside of the scope WSS.

