Encrypted SOAP Headers
August 23, 2004
Abstract

This document describes how to encrypt SOAP headers.
Table of Contents

1. Introduction
1.1. Notational Conventions
1.2. Namespaces
1.3. Schema File
2. Current Approaches
2.1. #Content
2.2. #Element
3. Encrypted Header
3.1. Schema
3.2. Sender Processing Guidelines
3.2. Receiver Processing Guidelines
3.3. Processing the *:mustUnderstand Attribute
3.4. Examples
6. Security Considerations
7. Acknowledgements
8. References

1. Introduction
The encryption mechanism described in WSS: SOAP Message Security[WSS] provides a general approach for encrypting XML elements. It does not provide specific guidance on how to encrypt immediate child elements of the SOAP[SOAP,SOAP12] Header element (SOAP header blocks). The SOAP processing model places specific requirements on SOAP header blocks which are not addressed by the encryption mechanism described in WSS: SOAP Message Security.

This specification builds on the encryption mechanism described in WSS: SOAP Message Security and adds specific processing guidelines for SOAP header blocks. To accomplish this purpose a new element <eh:EncryptedHeader> is introduced by this specification.

1.1. Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119[RFC2119].

When describing abstract data models, this specification uses the notational convention used by the XML Infoset [XML-Infoset]. Specifically, abstract property names always appear in square brackets (e.g., [some property]).

When describing concrete XML schemas [XMLSchema1,XMLSchema2], this specification uses the notational convention of WSS: SOAP Message Security. Specifically, each member of an element’s [children] or [attributes] property is described using an XPath-like notation (e.g., /x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of an element wildcard (<xs:any/>). The use of @{any} indicates the presence of an attribute wildcard (<xs:anyAttribute/>).
1.2. Namespaces

The following namespaces are used in this document:

	Prefix
	Namespace

	S
	http://www.w3.org/2003/05/soap-envelope

	S11
	http://schemas.xmlsoap.org/soap/envelope/

	ds
	http://www.w3.org/2000/09/xmldsig#

	xenc
	http://www.w3.org/2001/04/xmlenc#

	eh
	http://schemas.xmlsoap.org/ws/2004/08/eh

	wsse
	http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

	wsu
	http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

This specification uses the SOAP 1.2 specification for its examples; however, the mechanisms defined here are also applicable to SOAP 1.1.
1.3. Schema File

The schema for this specification can be found at:

 http://schemas.xmlsoap.org/ws/2004/08/eh
2. Current Approaches
The goals of encryption are to prevent disclosure of sensitive data to unauthorized parties. The SOAP processing model introduces unique challenges to encrypting SOAP headers. In the SOAP processing model, SOAP header blocks are required to allow the addition of SOAP attributes: S:mustUnderstand, S:role, S11:mustUnderstand, and/or S11:actor. In one interpretation of the model, SOAP processors are required to scan through all SOAP header blocks matching its role, and ensure that all SOAP header blocks marked with S:mustUnderstand="1" are “understood”. In addition SOAP intermediaries are at liberty to add SOAP attributes with default values to any SOAP header block which does not explicitly define values.
In discussions concerning the encryption of SOAP header blocks the terms #Content and #Element are often used. These terms capture two distinct approaches for dealing with the ambiguity imposed by matching the encryption guidelines in WSS: SOAP Message Security with the SOAP processing guidelines.
2.1. #Content

The term “#Content” refers to an approach where if a SOAP header block is being encrypted, only the contents are encrypted following the mechanism described in WS-Security. The advantage to this approach is that the SOAP processing guidelines for SOAP headers can be applied unambiguously to encrypted headers. The disadvantage is that portions of the data selected to be encrypted are left in the clear. Another disadvantage to this approach is that it may violate the schema for a header element by replacing the contents with an xenc:EncryptedData element.

2.2. #Element
The term “#Element” refers to encryption being applied to a SOAP header block exactly as any other XML element. The SOAP header block would be replaced with an xenc:EncryptedData element. The advantages to this approach are that there is no special handling required for encrypting SOAP headers and the schema for the encrypted SOAP header block is not affected. The disadvantages include processing ambiguity for xenc:EncryptedData and violation of the xenc:EncryptedData schema which prevents the addition of foreign attributes including standard SOAP attributes.
3. Encrypted Header

Neither of the approaches mentioned above provide clear guidance for all cases. In order to solve all of these issues, a new element, eh:EncryptedHeader is introduced. This element contains an xenc:EncryptedData element. It has an open attribute model to allow the addition of SOAP attributes and the wsu:Id attribute. In addition to these schema guidelines, this specification defines an explicit processing guideline which seeks to disambiguate the processing for encrypted SOAP header blocks by a receiver. This processing model is defined for eh:EncryptedHeader elements appearing as children of soap:Header. Any eh:EncryptedHeader elements appearing elsewhere in a message are outside the scope this specification and no processing model is defined for them.
3.1. Schema

The schema fragment for this header is as follows:
<xs:element name='EncryptedHeader' type='EncryptedHeaderType' />

<xs:complexType name='EncryptedHeaderType'>

 <xs:sequence>

 <xs:element ref='xenc:EncryptedData'>
 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>
3.2. Sender Processing Guidelines

The entire header block is encrypted including the top-level element, descendants and all attributes. The encryption is performed using the guidelines defined in WSS: SOAP Message Security. The original header block is replaced with an eh:EncryptedHeader element. The eh:EncryptedHeader element contains the xenc:EncryptedData produced from encrypting the header block. A wsu:Id attribute MAY be added to the eh:EncryptedHeader element for referencing. If the referencing wss:Security header block defines a value for the S:MustUnderstand or S11:MustUnderstand attribute, that attribute and associated value SHOULD be copied to the eh:EncryptedHeader element. If the referencing wss:Security header block defines a value for the S:Role or S11:Actor attribute, that attribute and associated value SHOULD be copied to the eh:EncryptedHeader element.
Any header block can be replaced with a corresponding eh:EncryptedHeader header block. This includes wss:Security header blocks. In addition, eh:EncryptedHeader header blocks can be super-encrypted and replaced by other eh:EncryptedHeader header blocks (for wrapping/tunneling scenarios).

Any wsse:Security header that encrypts a header block targeted to a particular actor SHOULD be targeted to that same actor.
3.3. Receiver Processing Guidelines
The processing model for eh:EncryptedHeader header blocks is as follows:

1. Resolve references to encrypted data specified in the wss:Security header block targeted at this node. For each reference, perform the following steps.

2. If the referenced element does not have a qualified name of eh:EncryptedHeader then decrypt as per WSS and stop the processing steps here.
3. Otherwise, extract the eh:EncryptedData element from the eh:EncryptedHeader element.

4. Decrypt the contents of the eh:EncryptedData element as per WSS specification and replace the eh:EncryptedHeader element with the decrypted contents.

5. Process the decrypted header block as per SOAP processing guidelines.

Alternatively, a processor may perform a pre-pass over the encryption references in the wsse:Security header:
1. Resolve references to encrypted data specified in the wss:Security header block targeted at this node. For each reference, perform the following steps.

2. If a referenced element has a qualified name of eh:EncryptedHeader then replace the eh:EncryptedHeader element with the contained eh:EncryptedData element and if present copy the value of the wsu:Id attribute from the eh:EncryptedHeader element to the eh:EncryptedData element.

3. Process the wss:Security header block as normal.

It should be noted that the results of decrypting a eh:EncryptedHeader header block could be another eh:EncryptedHeader header block. In addition, the result MAY be targeted at a different role than the role processing the eh:EncryptedHeader header block.

3.4. Processing the *:mustUnderstand Attribute

If the S11:mustUnderstand or S:mustUnderstand attribute is specified on the eh:EncryptedHeader header block, and is true, then the following steps define what it means to "understand" the eh:EncryptedHeader header block:

1. The processor MUST be aware of this element and know how to decrypt and convert into the original header block. This DOES NOT REQUIRE that the process know that it has the correct keys or support the indicated algorithms.
2. The processor MUST, after decrypting the encrypted header block, process the decrypted header block according to the SOAP processing guidelines. The receiver MUST raise a fault if any content required to adequately process the header block remains encrypted or if the decrypted SOAP header is not understood and the value of the S:mustUnderstand or S11:mustUnderstand attribute on the decrypted header block is true. Note that this is the value of the S:mustUnderstand or S11:mustUnderstand on the resulting decrypted header element, NOT the value of the S:mustUnderstand or S11:mustUnderstand on the eh:EncryptedHeader element.
3.5. Examples

The following example illustrates a SOAP 1.1 message with an encrypted header:
<S11:Envelope

 xmlns:S11="http://www.w3.org/2001/12/soap-envelope"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

 <S11:Header>

 <wsse:Security>
 <!-- Tokens etc. -->
 <xenc:ReferenceList>

 <xenc:DataReference URI="#hdrID"/>

 </xenc:ReferenceList>

 </wsse:Security>

 <eh:EncryptedHeader xmlns:eh="..." wsu:Id="hdrID">
 <xenc:EncryptedData>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 ...

 </xenc:EncryptedData>

 </eh:EncryptedHeader>

 </S11:Header>

 <S11:Body>

 ...

 </S11:Body>

</S11:Envelope>
The following example illustrates how different receivers an process different encrypted headers, this is done by using multiple <EncryptedHeader> elements in a single message.

	<S11:Envelope

 xmlns:S11="http://www.w3.org/2001/12/soap-envelope"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

 <S11:Header>

 <wsse:Security>

 <!-- Tokens etc. -->

 <xenc:ReferenceList>

 <xenc:DataReference URI="#hdrID"/>

 </xenc:ReferenceList>

 </wsse:Security>

 <wsse:Security S11:role='http://example.org/somerole' >

 <!-- Tokens etc. -->

 <xenc:ReferenceList>

 <xenc:DataReference URI="#hdr2ID"/>

 </xenc:ReferenceList>

 </wsse:Security>

 <eh:EncryptedHeader xmlns:eh="..." wsu:Id="hdrID">

 <xenc:EncryptedData>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 ...

 </xenc:EncryptedData>

 </eh:EncryptedHeader>

 <eh:EncryptedHeader xmlns:eh="..." wsu:Id="hdr2ID"
 S11:role='http://example.org/somerole' >

 ...

 </eh:EncryptedHeader>

 </S11:Header>

 <S11:Body>

 ...

 </S11:Body>

</S11:Envelope>

6. Security Considerations

TBD
7. Acknowledgements
Martin Gudgin, Microsoft

Maryann Hondo, IBM

Chris Kaler, Microsoft

Michael McIntosh, IBM

Anthony Nadalin, IBM

Doug Walter, Microsoft

8. References

[RFC2119]

S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, Harvard University, March 1997

[SOAP]

W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.

 [WSS]

OASIS,"Web Services Security: SOAP Message Security," 15 March 2004.
[XML-Encrypt]

W3C Recommendation, "XML Encryption Syntax and Processing," 10 December, 2002.

[XML-Infoset]

W3C Recommendation, " XML Information Set (Second Edition)," 4 February 2004.

[XML-Schema1]

W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001.

[XML-Schema2]

W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001.
Copyright Notice

TBD

