
Encrypted Key Token Profile 1.0
August 2004
Document identifier:

TBD:EncryptedKeyToken
Location:

TBD
Editors:

	
	
	

Contributors:

	
	
	

Abstract:

This document describes how to achieve secure communication with a web service such that communications with the web service are secured by using a key provided in the initiating request.
Status:

TBD
Table of Contents

31 Introduction

32 Notations and Terminology

32.1 Notational Conventions

32.2 Namespaces

42.3 Acronyms and Abbreviations

43 Key establishment

43.1 Key Reference in Signature element

44 Key Reference To Encrypted Key

44.1 Key Reference

44.2 Key Identifier

45. Examples

46 Error Codes

47 Security Considerations

48 References

4Appendix A. Revision History

4Appendix B. Notices

1 Introduction
This document describes how to achieve secure communication with a web service using a key establishment mechanism and a key referencing mechanism. Specifically, it describes a mechanism for establishing a cryptographic key and securing a message from the initiator, and the mechanism subsequently used for referencing the key and securing messages between the two parties using the referenced key. Such mechanisms are useful in the case where the initiator provides identity tokens which cannot be used (or are not safe) for performing cryptographic operations. Such mechanisms are also useful in cases where the intiator is anonymous. This document also describes how an encrypted security token can be carried in a message and how such a token can be referenced.
This section is non-normative.

2 Notations and Terminology

This section specifies the notations, namespaces, and terminology used in this specification.

2.1 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC 2119].

When describing abstract data models, this specification uses the notational convention used by the XML Infoset. Specifically, abstract property names always appear in square brackets (e.g., [some property]).

When describing concrete XML schemas [XML-Schema], this specification uses the notational convention of WSS: SOAP Message Security. Specifically, each member of an element’s [children] or [attributes] property is described using an XPath-like [XPath] notation (e.g., /x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of an element wildcard (<xs:any/>). The use of @{any} indicates the presence of an attribute wildcard (<xs:anyAttribute/>).
Commonly used security terms are defined in the Internet Security Glossary [SECGLO]. Readers are presumed to be familiar with the terms in this glossary as well as the definition in the Web Services Security specification.

2.2 Namespaces

Namespace URIs (of the general form "some-URI") represents some application-dependent or context-dependent URI as defined in RFC 2396 [URI]. This specification is designed to work with the general SOAP [SOAP11, SOAP12] message structure and message processing model, and should be applicable to any version of SOAP. The current SOAP 1.1 namespace URI is used herein to provide detailed examples, but there is no intention to limit the applicability of this specification to a single version of SOAP.

The namespaces used in this document are shown in the following table (note that for brevity, the examples use the prefixes listed below but do not include the URIs – those listed below are assumed).

	Prefix
	 Namespace

	S11
	http://schemas.xmlsoap.org/soap/envelope/

	S12
	http://www.w3.org/2003/05/soap-envelope

	wsse
	http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

	wsu
	http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

The URLs provided for the wsse and wsu namespaces can be used to obtain the schema files.
2.3 Acronyms and Abbreviations

The following (non-normative) table defines acronyms and abbreviations for this document.

	Term
	Definition

	SHA
	Secure Hash Algorithm

	SOAP
	Simple Object Access Protocol

	URI
	Uniform Resource Identifier

	UCS
	Universal Character Set

	UTF8
	UCS Transformation Format, 8-bit form

	XML
	Extensible Markup Language

3 Key Establishment
The initiator of the message exchange generates a random cryptographic key. This key (referred to as the EncryptedKey) may be used for signing and encrypting the message. This key MUST be encrypted using the recipient’s encryption key. If implementing this profile, the <wsse:SecurityHeader> MUST contain a <xenc:EncryptedKey> element whose <xenc:CipherData> contains the Base64 encoded encrypted key.
If the application requests integrity protection of the request message, then the following MUST be performed during the key establishment step:

The encrypted key MUST be used as a basis for signing the relevant message parts.

The encrypted key MUST be used as a basis for encrypting the signature.
For this profile, the semantics of an encrypted key token containing an encrypted key are undefined. For compliance with this profile, encrypted keys SHOULD NOT be used within encrypted keys (other token profiles may define semantics for this action).

3.1 Key Reference in Signature element

In order to have consistent processing, the <ds:KeyInfo> element in the <ds:Signature> in the key establishment message MUST contain a <wsse:SecurityTokenReference> element. This element MUST reference the Encrypted Key using a <wsse:Reference> element with a URI referencing the Id of the Encrypted Key. That is, the URI attribute on the <wsse:Reference> element MUST contain a reference whose value identifies the Id attribute on the <xenc:EncryptedKey> element.

The next section identifies how this EncryptedKey is referenced in subsequent messages.

4 Key Reference To Encrypted Key
The processors involved in the exchange preserve the Encrypted keys established as described in section 3 (Key Establishment) above,. The processors involved in the message exchange reference this key and secure subsequent messages using this referenced key.
4.1 Key Reference
In order to ensure consistent processing across all the token types supported by WSS:SOAP Message Security, the <wsse:SecurityTokenReference> element MUST be used to specify all references to the EncryptedKey in signature or encryption elements that comply with this profile.
4.2 Key Identifier
The <wsse:SecurityTokenReference> element MUST reference the EncryptedKey tokens using a <wsse:KeyIdentifier>. The <wsse:KeyIdentifier> element defaults to the encoding type of #Base64Binary. Other encoding types MAY be specified for key identifiers if known to all parties. The ValueType for the SecurityTokenReference MUST be as specified in table below:

	ValueType URI
	Description

	http://www.docs.oasis-open.org/wss/2004/07/oasis-200407-EncryptedKeyToken-profile-1.0#EncryptedKey
	A reference to a <xenc:EncryptedKey> token in the <wsse:Security> header block.

The identifier for a <xenc:EncryptedKey> token is defined as the SHA1 of the raw (pre-base64 encoding) octets specified in the CipherValue element of the referenced <xenc:EncryptedKey> token. This value is encoded as indicated in the KeyIdentifier reference.

5. Examples
The following example illustrates a key establishment step
<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." xmlns:xenc="..." xmlns:ds="...">

 <S11:Header>

 ...

 <wsse:Security>

 <!-- Encrypted Key being sent up by the client to the server-->

 <xenc:EncryptedKey Id="EK1">

 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep" />

 <ds:KeyInfo>

 <!-- Reference to server certificate used to encrypt the encrypted key -->

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier EncodingType="...#Base64Binary" ValueType="#X509v3">

 DweffeDWBCos12jjkla==

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <!-- Encrypted Key -->

 <xenc:CipherData>

 <xecn:CipherValue>

 U=Ca=NNotGsMiLaV

 </xecn:CipherValue>

 </xenc:CipherData>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#EncryptedSignature">

 <xenc:DataReference URI="#EncryptedUsername">

 <xenc:DataReference URI="#EncryptedBody">
 </xenc:ReferenceList>

 </xenc:EncryptedKey>

 <xenc:EncryptedData Id="EncryptedSignature">

 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes192" />

 <xenc:CipherData>

 <xenc:CipherValue>

 CFAweeAAZBCos12jjkla==

 <!-- BEGIN: unencrypted representation to show signature contents -->
 <ds:Signature>

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#EK1" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>
 </ds:Signature>
 <!-- END: unencrypted representation to show signature contents -->

 </xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

 <!-- optionality -->

 <xenc:EncryptedData Id="EncryptedUsername">

 <xenc:CipherData>

 <xenc:CipherValue>

 !N0Gs4WardPSS==

 <!-- BEGIN: unencrypted representation to show username token being secured using the specified key -->
 <wsse:UsernameToken>

 <wsse:Username>

 ...

 </wsse:Username>

 </wsse:UsernameToken>
 <!-- END: unencrypted representation to show username token being secured using the specified key -->
 </xenc:CipherValue>

 </xenc:CipherData>
 </xenc:EncryptedData>
 </wsse:Security>

 ...

 </S11:Header>

<S11:Body>
 <xenc:EncryptedData Id="EncryptedBody">

 <xenc:CipherData>

 <xenc:CipherValue>

 FRghHRU0...
 </xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

</S11:Body>
</S11:Envelope>
The following example illustrates a subsequent message using the established key
<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." xmlns:xenc="..." xmlns:ds="...">

 <S11:Header>

 ...

 <wsse:Security>

 <ds:Signature>

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier EncodingType="...#Base64Binary" ValueType="#EncryptedKey">

 DAyyXFOLXzyrU4..
 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 <xenc:EncryptedData>

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier EncodingType="...#Base64Binary" ValueType="#EncryptedKey">

 DAyyXFOLXzyrU4..
 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </xenc:EncryptedData>

 </wsse:Security>

 ...

 </S11:Header>

 <S11:Body>

</S11:Body>
</S11:Envelope>
6 EncryptedData Tokens
The <xenc:EncryptedData> element may be used as a security token and included in the <wsse:Security> header. In such cases the actual token is being encrypted for the recipient processing role.

It should be noted that token references are not made to the <xenc:EncryptedData> element, but instead to the token represented by the clear text once the <xenc:EncryptedData> element has been processed (decrypted). Such references utilize the token profile for the contained token.

All <xenc:EncryptedData> tokens SHOULD either have an embedded encryption key or should be referenced by a separate encryption key.

When a <xenc:EncryptedData> token is processed, it is replaced in the message Infoset with its decrypted form, that is with the contained security token.

7 Error Codes

Implementations may use custom error codes defined in private namespaces if needed. But it is RECOMMENDED that they use the error handling codes defined in the WSS: SOAP Message Security specification for signature, decryption, and encoding and token header errors to improve interoperability.
When using custom error codes, implementations should be careful not to introduce security vulnerabilities that may assist an attacker in the error codes returned.

8 Security Considerations
The use of Encrypted Key, KeyIdentifier reference and EncryptedData Tokens with SOAP Message security introduces no new message level threats beyond those identified in the OASIS SOAP Message security specification and other related security token profiles.

Care must be taken to protect the referenced keys at the initiator and the responder from being disclosed. In addition it is strongly recommended that the encrypted key not be used for an extended perid of time in order to mitigate key discovery and re-use.
It is strongly recommended that the signature element be encrypted. This prevents brute force attacks by guessing and confirming the value of encrypted content referenced in the signature. The digest value in a signature, if left in the clear, can be used to confirm a “guess” of content that is intended to have been kept secret, thus eliminating one significant step in the attacker’s brute force attack logic.
This section is non-normative.
9 References

The following are normative references:

[SECGLO]
Informational RFC 2828, "Internet Security Glossary," May 2000.

[RFC2119]
S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, Harvard University, March 1997

[WSS]
OASIS standard, "WSS: SOAP Message Security," TBD.

[SOAP11]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.

[SOAP12]
W3C Working Draft, “SOAP Version 1.2 Part 1: Messaging Framework”, 26 June 2002.

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[XML-Schema]
W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001.
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001.

[XPath]
W3C Recommendation, "XML Path Language", 16 November 1999

The following are non-normative references included for background and related material:

[WS-Security]
OASIS,”Web Services Security: SOAP Message Security” 19 January 2004, http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0

[XML-C14N]
W3C Recommendation, "Canonical XML Version 1.0," 15 March 2001

[EXC-C14N]
W3C Recommendation, "Exclusive XML Canonicalization Version 1.0," 8 July 2002.

[XML-Encrypt]
W3C Working Draft, "XML Encryption Syntax and Processing," 04 March 2002

W3C Recommendation, “Decryption Transform for XML Signature”, 10 December 2002.

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999.

[XML Signature]
W3C Recommendation, "XML Signature Syntax and Processing," 12 February 2002.

[XPointer]
"XML Pointer Language (XPointer) Version 1.0, Candidate Recommendation", DeRose, Maler, Daniel, 11 September 2001.
Appendix A. Revision History

	Rev
	Date
	By Whom
	What

	
	
	
	

Appendix B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2002-2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

6

TBD:
WSS: UsernameToken
Profile

 19 January 2004

Copyright © OASIS Open 2002-2004. All Rights Reserved. Page 10

