XACML Policy Proposal

The current syntax for policy in XACL is oriented around the 3-tuple {subject, object, action}. The subject primitive allows user IDs, groups, and/or role names. The object primitive allows granularity as fine as a single element within an XML document. The action primitive consists of four kinds of actions: read; write; create; and delete. Additionally, the concept of a provisional action has been included in the XACL work. The provisional action primitive allows the specification of provisions to be attached to the access decision (e.g., “Alice is allowed to read the salary field, provided that the access is logged”).

This 3-tuple, or triplet, approach to policy language definition is simple and powerful for some environments, but is unfortunately limited – in at least three ways – for other environments. Firstly, the built-in assumption that the object to be protected is (some portion of) an XML document is clearly unsuitable for environments that wish to protect other kinds of documents, data, devices, and so on. The XACML TC should not restrict itself to the notion that the only things that need access control in any organization are XML documents.

Secondly, the matching of a subject to an object can be of limited usefulness; more generally what is of value is the outcome of a comparison between a particular privilege of a subject and a particular property of an object. To use the oft-quoted military example, should the subject with “Secret” clearance be granted access to the file with a “Top Secret” classification label? Similarly, should the subject with “Gold Card” status be granted access to the “Members Only” section of the Web site? The XACL proposal makes a step toward this generality by allowing the subject to be a role name (since a role is simply a named collection of specific privileges), but does not allow the full generality because this mechanism prevents the assignment of privileges directly to users (i.e., assignment can happen only indirectly, through roles). Furthermore, the concept of object properties (sometimes called “sensitivities”) is not taken into account. The XACML TC should strive for the generality that will allow its output to be useful in many environments.

Thirdly, explicit inclusion of the action primitive within the policy language inherently limits the use of this language to actions that have been pre-defined by the standard-writers – in particular, read, write, create, and delete. In any real-world environment, however (especially within any given vertical market), there will be many other examples of actions that warrant access protection (e.g., “execute”, “initiate”, “approve”, “send”, “sign”). The primary purpose of standardization is interoperability; however, this cannot be achieved if the list of specified actions is incomplete and needs to be extended – in a proprietary fashion – within every environment. A preferred approach is to not specify the action primitive at all. This allows a policy to be written for a particular action (i.e., with a particular action in mind) and then processed by the access control decision function (sometimes called the Policy Decision Point) whenever an attempt is made to perform that action. [Conceptually, an access control policy is written for the “approve” method of the Purchase Order object. When another object tries to invoke that particular method, this policy is processed; a decision is made based upon a comparison of the requester’s privileges, the method’s sensitivities, and any other relevant variables (e.g., time of day, account balance); finally, the invocation of that method is either granted or denied.] Writing policies that include action primitives is inherently limiting; writing policies that only specify the comparisons to be made, and are linked to action primitives in the implementation environment, is much more general, flexible, and interoperable.

In order to address the above limitations in the XACL policy language, the following language is proposed for consideration by the XACML Technical Committee. The language is essentially identical to the PrivilegePolicy syntax contained in an informative annex in the International Standard X.509, translated into XML (both DTD and Schema versions are included). The syntax

· encompasses the generality of Boolean comparisons between privileges, sensitivities, and other relevant variables,

· leaves the linkage to action primitives to the implementation environment, and

· does not assume that the resource for which access control is desired is an XML document.

It is important to note that the XACL notion of provisional actions may still be utilized with this policy language; it is hoped that this important concept will be retained in the XACML TC.
<!ELEMENT privilegePolicy (ppe)>

<!ELEMENT ppe (ppPredicate | and | or | not | ordered)>

<!ELEMENT and (ppe , ppe+)>

<!ELEMENT or (ppe , ppe+)>

<!ELEMENT not (ppe)>

<!ELEMENT ordered (ppe+)>

<!ELEMENT ppPredicate (present | equality | greaterOrEqual |

lessOrEqual | subsetOf | supersetOf | nonNullSetIntersection)>

<!ELEMENT present (referencedData)>

<!ELEMENT equality (referencedData , secondOperand)>

<!ELEMENT greaterOrEqual (referencedData , secondOperand)>

<!ELEMENT lessOrEqual (referencedData , secondOperand)>

<!ELEMENT subsetOf (referencedData , secondOperand+)>

<!ELEMENT supersetOf (referencedData , secondOperand+)>

<!ELEMENT nonNullSetIntersection (referencedData , secondOperand+)>

<!ELEMENT referencedData (#PCDATA)>

<!ELEMENT secondOperand (referencedData | hardcodedValue)>

<!ELEMENT hardcodedValue (#PCDATA)>

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2000/10/XMLSchema">

<xsd:element name = "privilegePolicy">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "ppe"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ppe">

<!-- privilegePolicyExpression -->

<xsd:complexType>

<xsd:choice>

<xsd:element ref = "and"/>

<xsd:element ref = "or"/>

<xsd:element ref = "not"/>

<xsd:element ref = "ordered"/>

<xsd:element ref = "ppPredicate"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

<xsd:element name = "and">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "ppe"

minOccurs = 2 maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "or">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "ppe"

minOccurs = 2 maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "not">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "ppe"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ordered">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "ppe"

maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "ppPredicate">

<xsd:complexType>

<xsd:choice>

<xsd:element ref = "present"/>

<xsd:element ref = "equality"/>

<xsd:element ref = "greaterOrEqual"/>

<xsd:element ref = "lessOrEqual"/>

<xsd:element ref = "subsetOf"/>

<xsd:element ref = "supersetOf"/>

<xsd:element ref = "nonNullSetIntersection"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

<xsd:element name = "present">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "referencedData"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "equality">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "referencedData"/>

<xsd:element ref = "secondOperand"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "greaterOrEqual">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "referencedData"/>

<xsd:element ref = "secondOperand"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "lessOrEqual">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "referencedData"/>

<xsd:element ref = "secondOperand"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "subsetOf">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "referencedData"/>

<xsd:element ref = "secondOperand"

maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "supersetOf">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "referencedData"/>

<xsd:element ref = "secondOperand"

maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "nonNullSetIntersection">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "referencedData"/>

<xsd:element ref = "secondOperand"

maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "referencedData" type = "xsd:string"/>

<!-- an XPath expression, URL, OID, edifact field, etc., -->

<!-- that points to a specific data value -->

<xsd:element name = "secondOperand">

<xsd:complexType>

<xsd:choice>

<xsd:element ref = "referencedData"/>

<xsd:element ref = "hardcodedValue"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

<xsd:element name = "hardcodedValue" type = "xsd:string"/>

<!-- data value explicitly included in the policy expression -->

</xsd:schema>

