
XACML language proposal

Anne Anderson
Sun Microsystems

Bill Parducci
Bill Parducci

Carlisle Adams
Entrust

Ernesto Damiani
University of Milan

Hal Lockhart
Entegrity

Ken Yagen
Crosslogix

Michiharu Kudo
IBM, Japan

Pierangela Samarati
University of Milan

Sekhar Vajjhala
Sun Microsystems

Simon Godik
CrossLogix

Tim Moses
Entrust

Table of contents

41.
Glossary

1.1.
Preferred terms
4
1.2.
Related terms
5
2.
Introduction
5
3.
Example
6
3.1.
Introduction to the example
6
3.2.
Example medical record instance
6
3.3.
Example plain-language policies
7
3.4.
Example XACML policy instances
8
3.4.1.
Policy 1
8
3.4.2.
Policy 2
9
3.4.3.
Policy 3
10
3.4.4.
Policy 4
10
3.4.5.
Policy 5
11
3.4.6.
Policy 6
12
3.5.
Policy composition
13
4.
Models
14
4.1.
Data-flow model
14
4.2.
Policy language model
16
4.2.1.
Principal/role/attribute
17
4.2.2.
Resource/classification/attribute
18
4.2.3.
Environment/attribute
19
4.2.4.
Target/action/resource/classification
20
4.2.5.
Policy/rule/pre-condition/predicate
20
4.2.6.
Post-condition
21
4.2.7.
Attribute identification
22
4.3.
Administrative model
22
5.
Policy syntax
23
5.1.
Applicable policy
23
5.2.
TargetType
24
5.3.
PolicyType
24
5.4.
Signature
25
5.5.
RuleType
25
5.6.
RuleAbstractType
25
5.7.
AndType
26
5.8.
OrType
26
5.9.
NotType
26
5.10.
Predicate
27
5.11.
Equal
27
5.12.
Greater or equal
27
5.13.
Less or equal
28
5.14.
Sub-set of
28
5.15.
SupersetOf
28
5.16.
PatternMatch
28
5.17.
nonNullSetInterscetion
29
5.18.
External function
29
5.19.
PresentType
29
5.20.
CompareType
29
5.21.
Post-condition
30
5.22.
ValueRef
30
5.23.
Value
31
6.
Profiles
31
6.1.
XACML
31
6.2.
SAML
Error! Bookmark not defined.
6.3.
XML Digital Signature
32
6.4.
LDAP
32
7.
XACML extension points (informative)
32
8.
Security and privacy (informative)
32
9.
References
32

1.
Glossary

1.1. Preferred terms

Access - Performing an action on a resource
Access control - Controlling access in accordance with applicable policy
Action - Operation that may be performed on resource
Applicable policy - The complete set of rules that governs access for a specific resource
Attribute - Characteristic of a principal, resource or environment that may be referenced by a pre-condition
Authorization decision - The result of evaluation of applicable policy. A function with BOOLEAN range and, optionally, a set of post-conditions
Classification - A set of attributes relevant to a resource

Context - The intended use of information revealed as a result of access.

Decision request - The request by a PEP to a PDP to render an authorization decision
Environment - The set of attributes that may be referenced by pre-conditions and that are independent of a particular principal and resource
Information request - The request by the PDP to the PIP for one or more environment attributes
Policy - (see Applicable policy)

Policy administration point (PAP) - The system entity that creates applicable policy
Policy conflict - The state that exists when two or more pre-conditions, forming part of applicable policy, individually yield conflicting results

Policy decision point (PDP) - The system entity that evaluates applicable policy
Policy enforcement point (PEP) - The system entity that performs access control, by enforcing applicable policy
Policy information point (PIP) - The system entity that acts as the source of environment attributes
Policy mediation point (PMP) - The system entity that resolves policy conflict
Policy retrieval point (PRP) - The system entity that ensures applicable policy is complete
Post-condition - A process specified in a rule that must be completed in conjunction with access. There are two types of post-condition: an internal post-condition must be executed by the PDP prior to the issuance of a "permit" response, and an external post-condition must be executed by the PEP prior to permitting access
Predicate - A statement about attributes whose truth can be evaluated
Pre-condition - A predicate or logically-combined set of predicates
Principal - A system entity that can be referenced by a pre-condition
Resource - Data, service, or system component

Role - A set of attributes relevant to a principal
Rule - The combination of a pre- and one or more post-conditions

Target - The set of resources and actions to which an applicable policy applies
1.2. Related terms

In the field of access control and authorization there are several closely related terms in common use. For purposes of precision and clarity, certain of these terms are not used in this specification.

For instance, the term attribute is used in place of the terms: privilege, permission, right, authorization and entitlement.

The terms "subject" and "user" are also in common use. But, we use the term principal in this specification.

The term "object" is also in common use, but we use the term resource in this specification.

While the term "group" is commonly used with a meaning that is distinct from that of role, the distinction has no significance in the domain of XACML, therefore, the term group is not used here.

2. Introduction

XACML specifies a mark-up language for access control policies. It is intended to be used in conjunction with SAML assertions and messages.

3. Example

The information in this section is non-normative.

3.1. Introduction to the example

This section contains an example of the application of XACML policies to a medical record. Six policies are defined.

3.2. Example medical record instance

Following is an instance of a medical record to which the example policies can be applied. The "record" schema is defined in the registered namespace administered by "medico.com".

<?xml version="1.0" encoding="UTF-8"?>
<record xmlns="medico.com/records.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="medico.com/records.xsd

D:\MYDOCU~1\Standards\XACML\record.xsd">

<patient>

<patientName>

<first>Bartholomew</first>

<last>Simpson</last>

</patientName>

<patientContact>

<street>27 Shelbyville Road</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.4567</phone>

<fax/>

<email/>

</patientContact>

<patientDoB xsi:type="date">1992-03-21</patientDoB>

<patientGender xsi:type="string">male</patientGender>

<policyNumber xsi:type="string">555555</policyNumber>

</patient>

<parentGuardian>

<parentGuardianName>

<first>Homer</first>

<last>Simpson</last>

</parentGuardianName>

<parentGuardianContact>

<street>27 Shelbyville Road</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.4567</phone>

<fax/>

<email>homers@aol.com</email>

</parentGuardianContact>

</parentGuardian>

<primaryCarePhysician>

<physicianName>

<first>Julius</first>

<last>Hibbert</last>

</physicianName>

<physicianContact>

<street>1 First St</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.9012</phone>

<fax>555.123.9013</fax>

<email/>

</physicianContact>

<registrationID>ABC123</registrationID>

</primaryCarePhysician>

<insurer>

<name>Blue Cross</name>

<street>1234 Main St</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.5678</phone>

<fax>555.123.5679</fax>

<email/>

</insurer>

<medical>

<treatment>

<drug>

<name>methylphenidate hydrochloride</name>

<dailyDosage>30mgs</dailyDosage>

<startDate>1999-01-12</startDate>

</drug>

<comment>patient exhibits side-effects of skin coloration and carpal degeneration</comment>

</treatment>

<result>

<test>blood pressure</test>

<value>120/80</value>

<date>2001-06-09</date>

<performedBy>Nurse Betty</performedBy>

</result>

</medical>
</record>
3.3. Example plain-language policies

The following plain-language policies are to be enforced:

1. A person may read any record for which he or she is the designated patient.

2. A person may read any record for which he or she is the designated parent or guardian, and for which the patient is under 16 years of age.

3. A physician may read any record and write any medical element for which he or she is the designated primary care physician, provided an email notice is sent to the patient or the parent/guardian, in case the patient is under 16.

4. An administrator may read and write any record during office hours and from a designated IP address sub-space.

5. An administrator shall not be permitted to read or write a medical element.

6. A researcher may read a medical element and the patient's date of birth and gender.

These policies may be written by different PAPs, operating independently, or by a single PAP.

3.4. Example XACML policy instances

3.4.1. Policy 1

Here is the XACML policy instance for Policy 1.

<?xml version="1.0" encoding="UTF-8"?>
<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="patients can read their own records" issueInstant="2002-01--8">

<target

resourceClassification="medico.com/record.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read

</target>

<policy>

<and>

<equal>

<valueRef entity="principal" attributeName="rec:patient/policyNumber"/>

<valueRef entity="resource" attributeName="rec:patient/policyNumber"/>

</equal>

<equal>

<valueRef attributeName="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:patient/patientName"/>

</equal>

</and>

</policy>
</applicablePolicy>

Notes:

The "resource classification" expression is a regular expression, including the unique identifier for the root of the record and indicating that it applies to all descendant elements.

There are two pre-conditions, both of which must be satisfied. The first is that the identifier for the requestor is the same as the identifier for the patient. The first identifier is obtained from an "attributeName" element of a SAML attribute assertion of type "rec:patient/policyNumber". The second identifier is obtained from the policy number in the record. The second pre-condition is that the name of the principal, as determined by the SAML authentication assertion, is the same as the name of the patient, as determined by the record.

Instead of the "entity" attribute, different type identifiers can be used for the two types of policy number. Then the valueRef "entity" attribute can be omitted.

Issue: policy names are strings. Should we make then URIs?

Issue: the "rec:patient/patientName" element is a complex type. So, how should we indicate the required type in the policy?
3.4.2. Policy 2

Here is the XACML policy instance for Policy 2.

<?xml version="1.0" encoding="UTF-8"?>
<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="parents and guardians can read records if the patient is under sixteen" issueInstant="2002-01--8">

<target resourceClassification="medico.com/record.*" resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read

</target>

<policy>

<and>

<greaterOrEqual>

<valueRef attributeName="rec:patient/patientDoB"/>

<value xsi:type="date">1986-01-08</value>

</greaterOrEqual>

<equal>

<valueRef attributeName="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:parentGuardian/parentGuardianName"/>

</equal>

</and>

</policy>
</applicablePolicy>

Notes:

The approach to the patient's age is clearly unsatisfactory as it stands, because it requires the policy to be updated daily with a new date. A different solution should be sought. One option is to include arithmetic operators in the language. Another option is to use an external function for the calculation.

3.4.3. Policy 3

Here is the XACML policy instance for Policy 3.

<?xml version="1.0" encoding="UTF-8"?>
<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="primary care physician may read and write, provided the patient is notified" issueInstant="2002-01--8">

<target

resourceClassification="medico.com/record.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read write

</target>

<policy>

<equal>

<valueRef attributeName="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:primaryCarePhysician/physicianName"/>

</equal>

<postCondition>

<internalPostCondition>

wsdl

</internalPostCondition>

</postCondition>

</policy>
</applicablePolicy>

Notes:

The post condition applies only to its immediately preceding sibling rule. While it may seem more desirable to have an element that explicitly encloses the post-condition with the rule to which it applies, this solution would lead to the inclusion of unnecessary tags in XACML instances when no post-condition is present.

3.4.4. Policy 4

Here is the XACML policy instance for Policy 4.

<?xml version="1.0" encoding="UTF-8"?>
<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="administrators may read and write records during office hours from an office location" issueInstant="2002-01--8">

<target

resourceClassification="medico.com/record.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read write

</target>

<policy>

<and>

<equal>

<valueRef attributeName="rec:role"/>

<value xsi:type="string">administrator</value>

</equal>

<greaterOrEqual>

<valueRef attributeName="rec:timeOfDay"/>

<value xsi:type="time">08:00</value>

</greaterOrEqual>

<lessOrEqual>

<valueRef attributeName="rec:timeOfDay"/>

<value xsi:type="time">17:00</value>

</lessOrEqual>

<patternMatch>

<valueRef attributeName="saml:authenticationLocality/IPAddress</valueRef>

<value xsi:type="string">123.*</value>

</patternMatch>

</and>

</policy>

</applicablePolicy>

Notes:

Pattern match uses the regular expression syntax.

Attributes of type "rec:role" may be found in a SAML attribute assertion that links to the principal.

3.4.5. Policy 5

Here is the XACML policy instance for Policy 5.

<?xml version="1.0" encoding="UTF-8"?>
<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="administrators shall not read or write a medical element" issueInstant="2002-01--8">

<target

resourceClassification="medico.com/record/medical.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read write

</target>

<policy>

<not>

<equal>

<valueRef attributeName="rec:role"/>

<value xsi:type="string">administrator</value>

</equal>

</not>

</policy>
</applicablePolicy>

Notes:

The target of Policy 5 is more specific than the target of Policy 4.

This is an example of a "deny" policy.

3.4.6. Policy 6

Here is the XACML policy instance for Policy 6.

<?xml version="1.0" encoding="UTF-8"?>
<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="researchers may read medical elements and the patient's date of birth and gender" issueInstant="2002-01--8">
<!-- -->

<target

resourceClassification="medico.com/record/medical.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read

</target>

<target

resourceClassification="medico.com/record/patient/patientDoB.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read

</target>

<target

resourceClassification="medico.com/record/patient/patient/gender.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read

</target>

<policy>

<equal>

<valueRef attributeName="rec:role"/>

<value xsi:type="string">researcher</value>

</equal>

</policy>
</applicablePolicy>
Notes:

3.5. Policy composition

More than one policy may apply to a given resource. For instance, the "date of birth" element is governed by policies 1,2,3,4 and 6. Therefore, in plain language, the read policy applicable to "date of birth" is that at lease one of the following conditions must hold:

· The requestor is the patient;

· The requestor is the guardian and the patient is under 16;

· The requestor is the primary care physician and a notification is sent to the patient;

· The requestor is a researcher; or

· The requestor is an administrator working from the office inside office hours.

Here is the combined XACML applicable policy.

<?xml version="1.0" encoding="UTF-8"?>
<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" issueInstant="2002-01--8">

<target resourceClassification="medico.com/record/patient/patientDoB>

read

</target>

<policy>

<or>

<and>

<equal>

<valueRef entity="principal" attributeName="rec:patient/policyNumber"/>

<valueRef entity="resource" attributeName="rec:patient/policyNumber"/>

</equal>

<equal>

<valueRef attributeName="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:patient/patientName"/>

</equal>

</and>

<and>

<greaterOrEqual>

<valueRef attributeName="rec:patient/patientDoB"/>

<value xsi:type="date">1986-01-08</value>

</greaterOrEqual>

<equal>

<valueRef attributename="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:parentGuardian/parentGuardianName"/>

</equal>

</and>

<equal>

<valueRef attributeName="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:primaryCarePhysician/physicianName"/>

</equal>

<postCondition>

<internalPostCondition>

wsdl

</internalPostCondition>

</postCondition>

<and>

<equal>

<valueRef attributeName="rec:role"/>

<value xsi:type="string">administrator</value>

</equal>

<greaterOrEqual>

<valueRef attributeName="rec:timeOfDay"/>

<value xsi:type="time">08:00</value>

</greaterOrEqual>

<lessOrEqual>

<valueRef attributeName="rec:timeOfDay"/>

<value xsi:type="time">17:00</value>

</lessOrEqual>

<patternMatch>

<valueRef attributeName="saml:authenticationLocality/IPAddress"/>

<value xsi:type="string">123.*</value>

</patternMatch>

</and>

<equal>

<valueRef attributeName="rec:role"/>

<value xsi:type="string">researcher</value>

</equal>

</or>

</policy>

</applicablePolicy>

Notes:

The resource classification element contains the resource identity. Therefore, the resource classification transform is not required.

If the composed policy is signed, then it must be signed by the PRP, not the original PAPs.

4. Models

The information in this section is non-normative.

The context and schema of XACML are described in three models that elaborate different aspects of its operation. These models are: the data-flow model, the policy language model and the administrative model. They are described in the following sub-sections.

4.1. Data-flow model

The major actors in the XACML domain are shown in the data-flow diagram of Figure 1.

[image: image1.wmf]PEP

PDP

2.saml authorization

query

Web service

PRP/PMP

3. classification

action

PIP

5. saml attribute

query

9. saml authorization

response + external post-condition

8 internal post-condition

4. applicable

policy

7. saml attribute

assertion

classification

environment

role

6a. attribute

6c. attribute

6b. attribute

PAP

1. applicable policy

Figure 1 - Data-flow diagram
Some of the data-flows shown in the diagram may be facilitated by a repository. For instance, the communications between the PDP and the PIP may be facilitated by a repository, or the communications between the PDP and the PRP may be facilitated by a repository or the communication between the PAP and the PRP may be facilitated by a repository. The XACML specification is not intended to place restrictions on the location of any such repository, or indeed to prescribe a particular communication protocol for any of the data-flows.

The model operates according to the following steps.

1. PAPs write applicable policy and make it available to the PRP. From the point of view of an individual PAP, the applicable policy may be the complete policy for a particular resource. However, the PRP may be aware of other PAPs that it consdier authoritative for the resource. In which case, it is the PRP's job to obtain all the policies and (if necessary) use a PMP to remove any conflict amongst the various policies. The result should be a self-consistent applicable policy.

2. The PEP sends a decision request to the PDP, in the form of a SAML [SAML] authorization query. The decision request contains some or all of the attributes required by the PDP to render a decision, in accordance with policy.

3. The PDP locates and retrieves the policy instance applicable to the decision request from the PRP. It uses the resource classification and the requested action to identify the correct policy. The means by which the PDP determines the classification of the resource is out of scope for this specification. However, in the case where the resource is an XML document, its classification may be an attribute of the top-level element of the resource. Alternatively, the classification element of the policy could be a regular expression that matches the resource name (however, this approach only helps the PDP to verify the policy, it does not help it to locate and retrieve it).

4. The PRP returns the complete applicable policy to the PDP in the form of an XACML instance.

5. The PDP examines the decision request and the policy to ascertain whether it has all the attribute values required to render an authorization decision. If it does not, then it requests attributes from suitable PIPs in the form of SAML attribute queries [SAML].

6. The PIP (which may be a SAML attribute authority) may locate and retrieve the requested attributes from other systems by a means, and in a form, that is out of scope for this specification.

7. The PIP returns the requested attributes to the PDP in the form of SAML attribute responses containing SAML attribute assertions.

8. The PDP evaluates the policy instance. In the case where the policy instance contains internal post-conditions, the PDP executes those post-conditions.

9. If the policy were to evaluate to TRUE, and the internal post-conditions were to execute successfully, then the PDP returns an authorization decision, in the form of a SAML authorization response, to the PEP containing the "permit" decision attribute and any external post-conditions.

4.2. Policy language model

The policy language model is shown in Figure 2.

[image: image2.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

role attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 2 - Policy language model
For purposes of explanation, the language model divides into six parts. These are each described in the following sub-sections.

4.2.1. Principal/role/attribute

The principal/role/attribute section of the language model is shown in grey in Figure 3.

[image: image3.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 3 - Principal/role/attribute section of the language model
An authorization request relates to a single principal. XACML policy instances may reference attributes of a particular principal, or a role of the principal. The PDP should use attribute assertions to confirm whether the principal occupies a role specified in policy. Both the principal and the role may have attributes. For instance, the principal "Joe" may have an attribute of type "role" set equal to the value "purchasing officer". Alternatively, the role "purchasing officer" may have an attribute of type "signing limit" set equal to the value "US$100,000". Principal and role attributes are asserted by authorities and distributed in the form of SAML attribute assertions. The PDP is responsible for checking that the attribute values it operates upon are asserted by suitable authorities.

4.2.2. Resource/classification/attribute

The resource/classification/attribute section of the language model is shown in grey in Figure 4.

[image: image4.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 4 - Resource/classification/attribute section of the language model
An authorization request relates to a single resource. XACML policies may reference attributes of a particular resource or a classification of the resource. The PDP is responsible for confirming that the resource occupies the required classification and for locating and retrieving the resource attributes referenced by the applicable XACML policy instance. The PDP is responsible for checking that the attribute values it operates upon are asserted by suitable authorities. In the case where the resource is an XML document, the resource classification may be an attribute or element within the resource itself. In other cases, resource and classification attributes may be asserted by authorities and distributed in the form of SAML attribute assertions.

Both the resource and classification may have attributes. For instance, a purchase order may have an attribute of type "total price" set equal to the value "US$87,750.00". Alternatively, the classification "capital equipment" may have an attribute of type "category of goods" set equal to the value "computer equipment".

4.2.3. Environment/attribute

The environment/attribute section of the language model is shown in grey in Figure 5.
[image: image5.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 5 - Environment/attribute section of the language model
XACML policy instances may reference attributes that are not directly associated either with the principal or the resource. These attributes are called environment attributes. For instance, the "current time of day" is an environment attribute that may be referenced by a policy instance. Environment attributes are asserted by authorities and distributed in the form of SAML attribute assertions. The PDP must check that the attribute values it operates upon are asserted by suitable authorities.

4.2.4. Target/action/resource/classification

The target/action/classification section of the language model is shown in grey in Figure 6.

[image: image6.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 6 - Target/action/resource/classification section of the language model
Policy instances are identified with a classification/action pair. The PDP is responsible for checking that the policy instance it uses to compute the authorization decision is applicable to the authorization request. It does this by verifying that the action identified in the authorization request is the same as the action identified in the policy instance, and that the resource identified in the authorization request belongs to the classification identified in the policy instance. The algorithm for matching a resource name to a classification name is identified by a URI. Regular expression may be used for resources in the URI namespace.

4.2.5. Policy/rule/pre-condition/predicate

The policy/rule/pre-condition/predicate section of the language model is shown in grey in Figure 7.

[image: image7.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 7 - Policy/rule/pre-condition/predicate section of the language model
XACML policy instances are built from a logical combination of rules. Each rule comprises one pre-condition and zero or more post-conditions. A pre-condition is a logical operator or predicate. A predicate is a statement about attributes that can be verified by the PDP. If the policy instance applicable to an authorization request evaluates to TRUE, and all internal post-conditions are satisfied, then the PDP may return an authorization decision attribute with the value "permit" to the PEP.

4.2.6. Post-condition

The post-condition section of the language model is shown in grey in Figure 8.

[image: image8.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 8 - Post-condition section of the language model

Post-conditions are actions specified in an XACML policy instance. Post-conditions are of two types. Internal post-conditions must be successfully executed prior to returning an authorization decision attribute with the value "permit". External post-conditions must be returned by the PDP to the PEP and an authorization decision attribute with the value "permit" may be issued without confirmation that the condition has been successfully executed.

4.2.7. Attribute identification

Attribute specifiers are formed of two components: a list of authorities and an attribute name. The first component identifies the authority for the attribute and the second component identifies the attribute type. In the case where a suitable attribute assertion is provided by the PEP in the decision request, the PDP identifies the appropriate assertion by comparing the authorities list with the issuer field of the assertion. In the case where no suitable assertion is provided by the PEP, then the authorities list can be used to locate a suitable attribute authority to which to send a SAML attribute request.

Sometimes principals and resources possess attributes of the same type that must both be referenced by policy. For instance, in the example given in Section 3, the "policy number" attribute of the requestor has to be compared with the "policy number" attribute in the record. If both attributes have the same identifier, confusion results. Therefore, the policy must make it clear which "policy number" attribute is intended. Two options exist for discriminating between the same attribute of different entities:

· Elements of the policy that identify attributes, themselves, have attributes or element tags that indicate which entity is the intended holder of the attribute;

· The attributes have different identifiers that discriminate the attribute holders.

In the current version of XACML we provide an optional attribute of the valueRef element to differentiate, in the case where the same attribute of different model entities have the same identifier. This approach also allows distinct attribute identifiers to be used if the policy writer so prefers.

4.3. Administrative model

It is essential that XACML policy instances only contain references to attributes and post-conditions that are accessible by the PDP or PEP. The administrative model, shown in Figure 9, illustrates how this is achieved. The various SAML attribute authorities involved must provide an interface by which the policy administration point can discover the attribute types available from it.

[image: image9.wmf]Attribute

authority

(role)

Attribute

authority

(classification)

Attribute

authority

(environment)

Attribute

authority

(resource)

Post-

conditions

PAP

PRP

applicable policy

available post conditions

post condition

environment attribute types

environment attribute values

classification attribute types

classification attribute values

resource attribute types

resource attribute values

role attribute types

role attribute values

Attribute

authority

(principal)

principal attribute types

principal attribute values

PDP/PEP

applicable policy

Figure 9 - Administrative model
5. Policy syntax

The information in this section is normative, with the exception of the schema fragments (the normative version of the schema appears in the Appendix).
5.1. Applicable policy

"Applicable policy" is the top-level element. It contains a "target" element, which indicates the resources to which the policy applies, and a "policy" element, which contains the actual policy.

<xs:element name="applicablePolicy" type="xacml:ApplicablePolicyType"/>

<xs:complexType name="ApplicablePolicyType">

<xs:sequence>

<xs:element name="target" type="xacml:TargetType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="policy" type="xacml:PolicyType"/>

<xs:element name="ds:Signature" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="majorVersion" type="xs:integer" use="required"/>

<xs:attribute name="minorVersion" type="xs:integer" use="required"/>

<xs:attribute name="issuer" type="xs:string" use="required"/>

<xs:attribute name="policyName" type="xs:string" use="optional"/>

<xs:attribute name="issueInstant" type="xs:dateTime" use="optional"/>

</xs:complexType>

Issue: should this element be an extension point to which other policy syntaxes can be added?

Issue: should we make policy name a URI?

Issue: Should we include a "comment" element?

5.2. TargetType

Elements of type "TargetType" contain a description of the targets to which the policy applies, in the form of "resource classification" and "SAML:Actions" elements. PDPs SHOULD use the "target" element to locate, retrieve and verify the policy required for processing a particular SAMLp:authorizationQuery. Verification means confirming that the value of the "SAML:Actions" elements in the "target" element includes all the values of the "SAML:Actions" element in the SAMLp:authorizationQuery. Resources may be aggregated under a common resource classification, and policy may be targeted at a classification. The "resource classification transform" defines the matching rules between a resource identifier and a resource classification identifier. XACML will define, at least, a transform algorithm for regular expressions.

<xs:complexType name="TargetType">

<xs:sequence>

<xs:element ref="SAML:Actions" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="resourceClassification" type="xs:anyURI"/>

<xs:attribute name="resourceToClassificationTransform" type="xs:anyURI" use="optional"/>

</xs:complexType>

5.3. PolicyType

The "PolicyType" element is an aggregation of rules. Rules must be combined with logical operations, not merely listed. It also contains optional post-conditions associated with each rule.

<xs:complexType name="PolicyType">

<xs:complexContent>

<xs:extension base="xacml:RuleType">

<xs:sequence>

<xs:element ref="xacml:postCondition" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>
5.4. Signature

The signature element is imported from XML DSig.

Issue: should we use a SAML assertion as a container for an XACML applicable policy?

5.5. RuleType

The "RuleType" derives from the RuleAbstractType by restricting the number of elements to just one of the choices. This enforces the combination of predicates using explicit logical operators, not merely by listing.

<xs:complexType name="RuleType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence>

<xs:choice>

<xs:element name="and" type="xacml:AndType"/>

<xs:element name="or" type="xacml:OrType"/>

<xs:element name="not" type="xacml:NotType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

Issue: Should we allow a policy element in a rule? Then the same schema could express the policy for combining policies. If so, should it be policy or applicable policy?

5.6. RuleAbstractType

The "RuleAbstractType" contains either a logical operator or predicate. The logical operators derive from the "RuleType", with the effect that the logical operators can be nested indefinitely, terminating in a predicate. The associated class is of type "boolean". If it evaluates to TRUE and the internal post-conditions are successfully executed, then the PDP MAY return the "permit" value in the SAML decision attribute. Otherwise, it MUST return the "deny" value.

<xs:complexType name="RuleAbstractType" abstract="true">

<xs:sequence maxOccurs="unbounded">

<xs:choice>

<xs:element name="and" type="xacml:AndType"/>

<xs:element name="or" type="xacml:OrType"/>

<xs:element name="not" type="xacml:NotType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:complexType>
5.7. AndType

The "AndType" derives from the "RuleType" by restricting the minimum acceptable number of sub-elements to two.

<xs:complexType name="AndType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence minOccurs="2" maxOccurs="unbounded">

<xs:choice>

<xs:element name="and" type="xacml:AndType"/>

<xs:element name="or" type="xacml:OrType"/>

<xs:element name="not" type="xacml:NotType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>
5.8. OrType

The "OrType" derives from the "RuleType" by restricting the minimum acceptable number of sub-elements to two.

<xs:complexType name="OrType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence minOccurs="2" maxOccurs="unbounded">

<xs:choice>

<xs:element name="and" type="xacml:AndType"/>

<xs:element name="or" type="xacml:OrType"/>

<xs:element name="not" type="xacml:NotType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>
5.9. NotType

The "NotType" derives from the "RuleType" by restricting the acceptable number of sub-elements to one.

<xs:complexType name="NotType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence>

<xs:choice>

<xs:element name="and" type="xacml:AndType"/>

<xs:element name="or" type="xacml:OrType"/>

<xs:element name="not" type="xacml:NotType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>
5.10. Predicate

The "predicate" element contains one of the predicates defined here, including an external function.

This is an XACML extensibility point. New predicates may be added in the substitution group of "predicate".

<xs:element name="predicate" type="xacml:PredicateAbstractType" abstract="true"/>

<!--This is an XACML extensibility point. New predicates may be added in the

substitution group of "predicate"-->

<xs:complexType name="PredicateAbstractType"/>

<xs:element name="present" type="xacml:PresentType" substitutionGroup="xacml:predicate"/>

<xs:element name="equal" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="greaterOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="lessOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="subsetOf" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="supersetOf" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="patternMatch" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="nonNullSetIntersection" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="externalFunction" type="xacml:ExternalFunctionType" substitutionGroup="xacml:predicate"/>
5.11. Equal

The "equal" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the value referenced by the first element is equal to the value referenced by the second element.

<xs:element name="equal" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

Issue: Should we require XML elements compared in this way to include an xsi:type attribute?

5.12. Greater or equal

The "greaterOrEqual" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the value referenced by the first element is greater than or equal to the value referenced by the second element. The elements must be of the same type, which may be string, normalizedString, byte, unsignedByte, base64Binary, hexBinary, integer, positiveInteger, negativeInteger, nonNegativeInteger, nonPositiveInteger, int, unsignedInt, long, unsignedLong, short, unsignedShort, decimal, float, double, time, dateTime, duration, date, gMonth, gYear, gYearMonth, gDay, gMonthDay, Name or Qname.

<xs:element name="greaterOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

5.13. Less or equal

The "lessOrEqual" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the value referenced by the first element is less than or equal to the value referenced by the second element. The elements must be of the same type, which may be string, normalizedString, byte, unsignedByte, base64Binary, hexBinary, integer, positiveInteger, negativeInteger, nonNegativeInteger, nonPositiveInteger, int, unsignedInt, long, unsignedLong, short, unsignedShort, decimal, float, double, time, dateTime, duration, date, gMonth, gYear, gYearMonth, gDay, gMonthDay, Name or Qname.

<xs:element name="lessOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>
5.14. Sub-set of

The "subSetOf" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the value referenced by the first element is amongst the set of values referenced by the second element.

<xs:element name="subsetOf" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>
5.15. Superset of

The "supersetOf" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the value referenced by the first element of the compareType is amongst the set of values referenced by the second element.

<xs:element name="supersetOf" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>
5.16. Pattern match

The "patternMatch" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the string referenced by the first element of the "compareType" matches the pattern defined in the string referenced by the second element. The pattern must be defined as a regular expression.

<xs:element name="patternMatch" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

5.17. Non-null set interscetion

The "nonNullSetIntersection" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the set of values referenced by the two elements of the "compareType" have at least one value in common.

<xs:element name="nonNullSetIntersection" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>
5.18. External function

The "externalFunctionType" type contains a definition of the interface to an external function. The external function is defined as a WSDL "definition" element for a "request-response" operation. The response must be of type "boolean".

<xs:element name="externalFunction" type="xacml:ExternalFunctionType" substitutionGroup="xacml:predicate"/>

<xs:complexType name="ExternalFunctionType">

<xs:complexContent>

<xs:extension base="xacml:PredicateAbstractType">

<xs:sequence>

<xs:element ref="xs:string"/>

<!-- could be a wsdl definition -->

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>
5.19. PresentType

Elements of type "PresentType" contain an element of type "valueRef". The associated class is of type "boolean". It MUST evaluate to TRUE only if the element obtained by resolving the "valueRef" element exists.

<xs:complexType name="PresentType">

<xs:complexContent>

<xs:extension base="xacml:PredicateAbstractType">

<xs:sequence>

<xs:element ref="xacml:valueRef"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>
5.20. CompareType

Elements of the type "CompareType" contain a pair of elements. The first is a "valueRef" element and the second is either a "valueRef" or "value" element. The elements contained in a "value" element or obtained by resolving a "valueRef" element MUST be of identical type.

<xs:complexType name="CompareType">

<xs:complexContent>

<xs:extension base="xacml:PredicateAbstractType">

<xs:sequence>

<xs:element ref="xacml:valueRef"/>

<xs:choice>

<xs:element ref="xacml:valueRef"/>

<xs:element ref="xacml:value"/>

</xs:choice>

</xs:sequence>

</xs:extension>

</xs:complexContent>

<!-- XML operands in "set" operations MUST be of type xs:list -->

<!-- XML operands in "inequality" operations MUST contain an xsi:type attribute for which

XACML defines a comparison algorithm -->

</xs:complexType>
5.21. Post-condition

The "postCondition" element contains a definition of the interface to an external function. The external function is defined as a WSDL "definition" element for a "one-way" operation. Internal post conditions are expected to be performed by the PDP, and a SAML "permit" decision attribute must not be returned unless such conditions are successfully executed. External post conditions are expected to be performed by the PEP, and the PDP MUST include them in the SAML authorization response message. The PDP MAY return a "permit" decision attribute without confirmation that such conditions have been successfully executed.

<xs:element name="postCondition" type="xacml:PostConditionType"/>

<xs:complexType name="PostConditionType">

<xs:sequence>

<xs:element name="internalPostCondition" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="externalPostCondition" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

<!-- could be a wsdl definition -->

</xs:sequence>

</xs:complexType>
5.22. ValueRef

The "valueRef" element contains the unique identifier of an attribute in the form of a string. The attribute value may be supplied in a SAML authorization request message or assertion. If the required attribute is not provided to the PDP by the PEP in the SAML authorization request message, then the PDP SHOULD send a SAML attribute request to the attribute authority identified by one of the authority elements. The request SHOULD identify the principal as the holder of the attribute.

In cases where the source of the attribute value is ambiguous, an attribute can be added to the element. If the "principal" attribute is present, then the PDP must use a value of the attribute type that is linked to the principal. Likewise, if the "resource" attribute is present, the PDP must use a value of the attribute type that is linked to the resource.

<xs:element name="valueRef">

<xs:complexType>

<xs:sequence>

<xs:element name="authority" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="entity" type="EntityType" use="optional"/>

<xs:attribute name="attributeName" type="string" use="required"/>

</xs:complexType>

</xs:element>

<xs:simpleType name="EntityType">

<xs:restriction base="string">

<xs:enumeration value="principal"/>

<xs:enumeration value="resource"/>

<xs:enumeration value="environment"/>

</xs:restriction>

</xs:simpleType>

Issue: Should we derive the attribute from saml:AttributeValueType? This seems to make sense, but the resulting attribute will have to become an element, with start and stop tags, making it larger and less readable.

5.23. Value

The "value" element contains a value written directly into the policy instance. Its type must be identical to that of any element with which it is paired in a predicate sub-element.

<xs:element name="value" type="xs:anyType"/>

This element SHOULD include an xsi:type attribute, indicating the xml type of the element contents.

Issue: This only allows for simple types. Do we need to support values of complex type?

6. Profiles

Information in this section is normative, but not mandatory to implement.

6.1. XACML

Describes subsets of XACML appropriate to general classes of problem

6.2. SAML

Describes the subset of SAML that is relevant to XACML

We need to specify SAML status codes for situations specific to XACML, such as:

· PDP has no policy for the requested target

· PDP cannot retrieve the required attributes

6.3. XML Digital Signature

Describes how XACML instances shall be integrity-protected in the case where XML DSig is used. PAPs MAY sign applicable policy. When a PRP combines applicable policies, it MAY sign the resulting applicable policy.

Issue: Should the identities and/or signatures of the PAPs be preserved in the composed policy?

6.4. LDAP

Describes an LDAP schema for the case where LDAP is used to distribute XACML

7. XACML extension points (informative)

Describes the points within the XACML model and schema where extensions can be added

8. Security and privacy (informative)

Vulnerabilities and safeguards

9. References

SAML

XML Digital Signature

Appendix A - Conformance

The information in this section is normative.

Not the test cases themselves, but a description of how the test cases should be used. The test cases will be a set of files on the XACML Web site

Appendix B - Schema

The information in this section is normative.

This appendix contains the XACML schema definition.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:saml="http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-21" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xacml="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:import namespace="http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-21" schemaLocation="http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-2.xsd"/>

<xs:import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="xmldsig-core-schema.xsd"/>

<xs:element name="applicablePolicy" type="xacml:ApplicablePolicyType"/>

<xs:complexType name="ApplicablePolicyType">

<xs:sequence>

<xs:element name="target" type="xacml:TargetType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="policy" type="xacml:PolicyType"/>

<xs:element name="ds:Signature" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="majorVersion" type="xs:integer" use="required"/>

<xs:attribute name="minorVersion" type="xs:integer" use="required"/>

<xs:attribute name="issuer" type="xs:string" use="required"/>

<xs:attribute name="policyName" type="xs:string" use="optional"/>

<xs:attribute name="issueInstant" type="xs:dateTime" use="optional"/>

</xs:complexType>

<xs:complexType name="TargetType">

<xs:sequence>

<xs:element ref="saml:Actions" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="resourceClassification" type="xs:anyURI"/>

<xs:attribute name="resourceToClassificationTransform" type="xs:anyURI" use="optional"/>

<!-- One transform algorithm could be "regular expression" -->

</xs:complexType>

<xs:complexType name="PolicyType">

<xs:complexContent>

<xs:extension base="xacml:RuleType">

<xs:sequence>

<xs:element ref="xacml:postCondition" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="RuleAbstractType" abstract="true">

<xs:sequence maxOccurs="unbounded">

<xs:choice>

<xs:element name="and" type="xacml:AndType"/>

<xs:element name="or" type="xacml:OrType"/>

<xs:element name="not" type="xacml:NotType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

<xs:complexType name="RuleType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence>

<xs:choice>

<xs:element name="and" type="xacml:AndType"/>

<xs:element name="or" type="xacml:OrType"/>

<xs:element name="not" type="xacml:NotType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="AndType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence minOccurs="2" maxOccurs="unbounded">

<xs:choice>

<xs:element name="and" type="xacml:AndType"/>

<xs:element name="or" type="xacml:OrType"/>

<xs:element name="not" type="xacml:NotType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="OrType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence minOccurs="2" maxOccurs="unbounded">

<xs:choice>

<xs:element name="and" type="xacml:AndType"/>

<xs:element name="or" type="xacml:OrType"/>

<xs:element name="not" type="xacml:NotType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="NotType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence>

<xs:choice>

<xs:element name="and" type="xacml:AndType"/>

<xs:element name="or" type="xacml:OrType"/>

<xs:element name="not" type="xacml:NotType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:element name="predicate" type="xacml:PredicateAbstractType" abstract="true"/>

<!--This is an XACML extensibility point. New predicates may be added in the

substitution group of "predicate"-->

<xs:complexType name="PredicateAbstractType"/>

<xs:element name="present" type="xacml:PresentType" substitutionGroup="xacml:predicate"/>

<xs:element name="equal" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="greaterOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="lessOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="subsetOf" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="supersetOf" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="patternMatch" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="nonNullSetIntersection" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="externalFunction" type="xacml:ExternalFunctionType" substitutionGroup="xacml:predicate"/>

<xs:complexType name="PresentType">

<xs:complexContent>

<xs:extension base="xacml:PredicateAbstractType">

<xs:sequence>

<xs:element ref="xacml:valueRef"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="CompareType">

<xs:complexContent>

<xs:extension base="xacml:PredicateAbstractType">

<xs:sequence>

<xs:element ref="xacml:valueRef"/>

<xs:choice>

<xs:element ref="xacml:valueRef"/>

<xs:element ref="xacml:value"/>

</xs:choice>

</xs:sequence>

</xs:extension>

</xs:complexContent>

<!-- XML operands in "set" operations MUST be of type xs:list -->

<!-- XML operands in "inequality" operations MUST contain an xsi:type attribute for which

XACML defines a comparison algorithm -->

</xs:complexType>

<xs:element name="valueRef">

<xs:complexType>

<xs:sequence>

<xs:element name="authority" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="entity" type="EntityType" use="optional"/>

<xs:attribute name="attributeName" type="string" use="required"/>

</xs:complexType>

</xs:element>

<xs:simpleType name="EntityType">

<xs:restriction base="string">

<xs:enumeration value="principal"/>

<xs:enumeration value="resource"/>

<xs:enumeration value="environment"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="value" type="xs:anyType"/>

<xs:complexType name="ExternalFunctionType">

<xs:complexContent>

<xs:extension base="xacml:PredicateAbstractType">

<xs:sequence>

<xs:element ref="xs:string"/>

<!-- could be a wsdl definition -->

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="postCondition" type="xacml:PostConditionType"/>

<xs:complexType name="PostConditionType">

<xs:sequence>

<xs:element name="internalPostCondition" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="externalPostCondition" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

<!-- could be a wsdl definition -->

</xs:sequence>

</xs:complexType>
</xs:schema>
V0.8

10 Jan 2002

31

