Model

The heart of the XACML model is the notion of a database of isolated rules. This database may be real or hypothetical, giving rise to two distinct – but related – sub-models. (See below for further explanation.) One or more Administration Points act as points of rule creation; that is, rules may be created centrally by one administrator/authority, or may be created in a distributed fashion by a number of independent administrators/authorities. The (real or hypothetical) database will store rules in such a way that queries to the database will retrieve all the rules that satisfy the query.

The general framework for access control assumes that the primary entities are subjects, actions, and resources. Therefore, queries with respect to access control will focus on one or more of these entities (“Can Joe read this file?”). Consequently, it is natural to expect that the database (for shortest retrieval times) would wish to have rules that could readily be examined according to these characteristics. That is, if a query arrived asking about rules for “subject = Joe”, the database engine would have best performance if rules could easily be scanned to see whether or not they match that criterion. This suggests that an isolated rule should have what is referred to as a “triple” syntax. This means that a rule (which ultimately is a predicate, or a logical combination of predicates) should have predicates that are readily identifiable as being about a subject, an action, or a resource.

Furthermore, because the creator of an isolated rule has no concept of how that rule will be incorporated into any policy, the rule itself must indicate whether it should contribute to a “grant” decision or a “deny” decision. The rule must explicitly encode grant/deny semantics.

A policy, in its simplest form, is a rule, or a logical combination of rules. More generally, it is a logical combination of rules, or other policies (which may be called sub-policies), or both. These rules and sub-policies may be explicitly included or may be included only by reference. Conceptually, however, it is always possible to de-reference all the references and end up with a “flat” policy that is just a logical combination of rules. Because individual rules carry grant/deny semantics, the logical combination of rules dispenses with the need for an explicit grant/deny indicator at the policy level: the logical combination can always be chosen such that an evaluation of TRUE means “grant” and an evaluation of “FALSE” means “deny”. The policy, then, does not explicitly encode grant/deny semantics.

Sub-Model 1: The Real Database

The sub-model in which the database of rules is real operates in the following way. A SAML authorization decision request is sent from the PEP to the PDP, perhaps along with a variety of relevant assertions. From this set of inputs, the PDP constructs a query in the format that the database will understand (e.g., an SQL query to a relational database). The database returns, in response to this query, all the rules it has that are relevant. (Note that the database may be distributed; nothing in this model mandates that all rules must reside in one central location, just that they should be retrievable when a database query arrives.) The PDP evaluates the rules – both “grants” and “denies”, if present – and returns a decision to the PEP. (See “How is Evaluation Done?” for further details.)

Sub-Model 2: The Hypothetical Database

The sub-model in which the database of rules is hypothetical operates in the following way. A SAML authorization decision request is sent from the PEP to the PDP, perhaps along with a variety of relevant assertions. From this set of inputs, the PDP needs to determine if it has a policy that is applicable to this request. The PDP does not have access to a database of isolated rules; rather, it has access to a database (or repository of some sort) of policies. Given that a policy is a (logical combination over) a set of rules, it is the case that – at least conceptually – this set of rules is exactly the set of rules that would have been returned by a rules database in response to a query formulated from this set of inputs. In other words, the query that would have returned this set of rules is semantically equivalent to an applicability or target element in the policy. The syntax would, of course, be different (it wouldn’t be an SQL query, for example), but the information content would be identical. This implies that the applicability element in the policy is the primary indexing mechanism for efficient retrieval, and aligns with the fact that this element is derived from the set of inputs that the PDP can be expected to receive from a PEP. (In effect, a policy is created to answer one or more anticipated questions. The corresponding applicability element, then, is an expression of the questions – the requests – to which this policy will apply.) Thus, it will always be clear to the PDP when a policy is applicable to a particular SAML request that it has received.

What happens if a policy references other sub-policies? Each sub-policy has an associated applicability element; what is the corresponding element of the upper-level policy? Again, because it is always possible (conceptually) to de-reference all references, the resulting “flat” policy is nothing more than a set of rules; the applicability element for this upper-level policy is just the semantic equivalent of the database query that would have returned exactly this combined set of rules.

Is it ever possible that the PDP will find more than one policy that is applicable to a given request? Yes. There could certainly be a departmental policy covering the files in AAACompany/R&D/* and a corporate policy covering the files in AAACompany/*. When the PDP searches for policies applicable to a request for the file AAACompany/R&D/latestResearch.pdf, both policies will be returned. The PDP evaluates all applicable policies and returns a decision to the PEP. (See “How is Evaluation Done?” for further details.)

How is Evaluation Done?

For the real database sub-model, the PDP will get a set of rules in response to its database query and needs to have a specific procedure for evaluating them. For example, one possible procedure might be “if any of the “grants” are satisfied, then return GRANT, unless any of the “denies” are satisfied, in which case return DENY”. The result is an OR of the “grant” rules overridden by an OR of the “deny” rules:

<and>

<or>

all the grant rules

</or>

<not>

<or>

all the deny rules

</or>

</not>

</and>

This procedure, though, can be followed by the PDP regardless of the actual rule instances that are returned in response to any given query. It is a procedure describing the desired behaviour of the PDP, based only on the types of rules (i.e., “grant” rules and “deny” rules) it might hold at any particular time. More generally, the identical situation holds for the case of the hypothetical database model: here the PDP needs to have a procedure describing what it should do with any given set of applicable policies that it might hold. Again, the procedure describes desired behaviour of the PDP, based only on the types of policies it might have (for example, “policies from this authority override all others”, or “policies about AAACompany/R&D/* override policies about AAACompany/*”, or “the most recent policy takes precedence”).

By definition, this procedure is a meta-policy, a statement about what to do with other policies (or rules). It does not include or reference any specific policies or rules; it describes only types, or characteristics, of rules and policies and says how to deal with them. Like a rule, the meta-policy is a logical combination of predicates, but the predicates deal with various attributes of rules and policies, rather than various attributes of resources, actions, and subjects. As well, although a meta-policy may be updated or replaced over time, the expectation is that the PDP will only operate according to a single meta-policy at any given time: the meta-policy describes THE behavior of the PDP with respect to any rules or policies it may hold for any reason. Therefore, by definition, the meta-policy is applicable to all requests that may arrive at a PDP and, consequently, has no applicability element.

Discussion

1) Because the applicability element of a policy defines the set of rules (or, if desired, some subset of the set of rules) it contains and is equivalent to the query that would have returned this set of rules, a policy can never return a value of “inapplicable”. In other words, it is not possible that a policy appears to be applicable based on its applicability element but turns out not to be applicable once evaluation of the contained rules takes place. A policy can return one of three values: “true”, “false”, and “insufficient data” (the latter case occurs if the required information cannot be found; for example, a rule says that the subject must have a role of “admin”, but no assertion for this role can be found or acquired). Given these policy return values, the PDP return values to the PEP are “permit”, “deny”, and “indeterminate” (these correspond to the values allowed in the SAML authorization decision response syntax). The PDP may also return a SAML error if a request is sent for which it can find no applicable policy in its repository. In effect, the PEP has sent its request to the wrong PDP. This is returned as an error (as opposed to a fourth possible decision value) because it is entirely analogous to “malformed request”. Thus, XACML operates with a 3-valued logic (with respect to evaluating combinations of policy results), augmented with a number of defined error conditions. Within a given applicable policy, however, it is possible that one or more specific rules do not apply to the request at hand. There are guaranteed to be some rules that do apply (since the policy, as a whole, is applicable), but there may be other rules that don’t. During evaluation of combinations of predicates within a policy, then, XACML operates with a 4-valued logic: “true”, “false”, “not applicable”, and “insufficient data”. That is, the operators AND, OR, NOT, and so on, must be defined to deal with operands of four possible values.

2) On first glance, it may seem that the hypothetical database model (with the policy repository) is impractical because it implies that there is a separate policy for every conceivable request, resulting in thousands or even millions of policies that must be stored and maintained. While this is of course possible, there is no reason to create policies in this way and, in practice, no reasonable administrator would do this. For example, a policy whose applicability element corresponds to “read file X” would be applicable for requests from the PEP such as “can Joe read file X?”, “can the VP read file X?”, “can (role=admin) read file X on Tuesday at 11:38 p.m.?”, and so on. That is, there need not be a huge number of policies with this model.

3) Although sub-model 1 and sub-model 2 are distinct, nothing in this discussion is intended to suggest that they cannot coexist. In particular, it is entirely possible for a PDP to be implemented in such a way that it has access both to a policy repository and to a rules database. When a request arrives from the PEP it may first check to see if it has a policy that applies and, failing that, check to see if it has any isolated rules that apply (i.e., only some policies may be “pre-baked”). Regardless of model, however, given the same set of inputs – rules, policies, meta-policy, SAML request, associated assertions and other data – two PDPs will arrive at the same decision.

4) To summarize, the XACML schema contains three top-level elements: rule; policy; and meta-policy.

· The rule is ultimately a logical combination of predicates, each of which is clearly about a resource, an action, or a subject. It carries an explicit indicator stating whether it is a “grant” rule or a “deny” rule, and it does not carry an applicability element.

· The policy is a logical combination of rules and/or other policies, each of which may be included or referenced. There can therefore be a hierarchy of policies. The policy does not carry an explicit indicator of “grant” or “deny”; an evaluation of TRUE means “grant” and an evaluation of FALSE means “deny”. It does carry an applicability element which, conceptually, defines the set of rules contained in the policy.

· The meta-policy is a logical combination of predicates, each of which is clearly about a rule or a policy. It does not carry an explicit indicator of “grant” or “deny”; an evaluation of TRUE means “grant” and an evaluation of FALSE means “deny”. It does not carry an applicability element.

The PDP operates according to one meta-policy, formulates a query (upon receipt of a request from a PEP) to retrieve a set of rules or a set of applicable policies or both, and evaluates these sets according to its meta-policy in order to arrive at a decision of “permit”, “deny”, or “indeterminate”. It returns one of these decisions, or some appropriate error condition, to the PEP.

