XACML functions.

General concepts

1. XACML function calls are denoted by the <Apply>, <Match> or <Condition> elements.  Only certain functions may be designated in <Match> or <Condition> elements.

2. Function is an extension point of the XACML specification.  Implementation may define additional functional and data types for its arguments and result values.  PDP should not enforce policy that specifies non-implemented functions and data types.

3. Arguments for the function are represented by another <Apply> calls, <AttibuteValue> elements, or one of the <AttributeDesignator> elements, according to the schema.

4. Result of function evaluation should depend only on the values of its arguments. No global and persistent parameters should affect evaluation.

5. For supported data types, implementation must be able to consume and produce string representation of the type values, reject invalid syntax, and provide transitive equality operation.

6. Each implementation should support following data types:

a. xs:string

b. xs:boolean

c. xs:integer

d. xs:decimal

e. xs:date

f. xs:time  

g. xs:dateTime

h. xs:anyURI

i. xs:Qname

j. x500Name

k. rfc822Name

l. xs:NOTATION

m. xs:hex

n. xs:base64

[REFERENCE for SYNTAX]

7. Each function argument is sequence of values of a specified data type.  Values specified by <AttributeDesignator> or <AttributeSelector> elements, that are not present in context, are represented as an empty sequence.

8. In situations described below, some arguments for a function may be considered invalid.  Result of evaluation of a function with invalid arguments must be specified in its description.  All core functions, except for ordered-or and or functions, must raise operational error if presented with an invalid argument.

9. Function arguments may be evaluated in any specified order, or not evaluated at all if a particular function specifies that the result can be computed.  Overall result of the function evaluation should not depend on how its arguments have been evaluated, and whether those not evaluated could have been invalid. 

10. If any element in a sequence cannot be interpreted as the specified data type, argument should be considered invalid.  Functions should not attempt to perform any implicit type conversions.

11. Following notation is used here to represented required size and content of a sequence.  Only type is specified in argument DataType attribute – size of the sequence is implied.

a. single<type> - sequence with one and only 1 element: single value of specified type.

b. sequence<type> - ordered sequence with 0 to unbounded number of elements

c. ne-sequence<type> - ordered sequence of 1 to unbounded elements

d. set<type> - ordered sequence, with unique elements.  If argument of a function is described as a set, then when a sequence with matching elements is given, it should be compacted with preserved order before evaluation: each subsequent duplicate value should be removed.

12. Type of the arguments is declared in the policy document.  PDP should not evaluate policy if anywhere in the policy types of the arguments do not match specified types for a particular function.

13. Function evaluation either returns a specified type of sequence of value of specified data type or raises an operational error.  

14. If function return value is used as an argument for another function, operational error should be treated as an invalid argument.

15. If function, referenced in <Match> element raises an error, match is considered negative.

16. If function, referenced in Condition element raises an error, rule evaluation is INDETERMINED.

17. Function must understand the length of the sequence.  If presented with a sequence of inappropriate length, function should treat this argument as invalid.

18. Equality functions. All implementation should provide following binary equality functions. This functions can be used in <Match> and <Condition> elements. They return single<xs:boolean> and take exactly two arguments of type specified in the Table 1.

a. string-equal

b. boolean-equal

c. integer-equal

d. decimal-equal

e. date-equal

f. time-equal

g. dateTime-equal

h. anyURI-equal

i. Qname-equal

j. x500Name-equal

k. rfc822Name-equal 

l. NOTATION-equal

m. hex-equal

n. base64-equal

19. Arithmetic operation functions

a. integer-add  – may have any number of arguments

b. decimal-add – may have any number of arguments

c. integer-subtract

d. decimal-subtract

e. integer-multiply

f. decimal-multiply

g. integer-divide

h. decimal-divide

i. integer-mod

j. decimal-mod

20. Modification and type conversion functions. Take a non-empty sequence of the specified type and return sequence of the same size, preserving order.

a. round

b. floor

c. abs

d. decimal-to-integer

e. integer-to-decimal

21. Logical functions. These functions can be used in <Condition> element.

a. ordered-or

b. or – ordered or and or return boolean true, if at least one argument has boolean value true: some arguments may be invalid. Accept any number of arguments of type single<boolean>

c. n-of – first argument is an integer specifying how many true values in the remaining arguments must be present to return true. If the first argument is 0, result is always true. If number of arguments after the first one is less then the value of the first argument, result is an error.

d. and – accept any number of arguments. All arguments must be valid and true to return true

e. ordered-and

f. not

g. present – returns true if an attribute name: function first argument of type xs:anyURI, is defined in the context. May be used in <Condition> element.

22. Comparison functions.

a. integer-greater-then

b. integer-greater-then-or-equal

c. decimal-greater-then

d. decimal-greater-then-or-equal

e. string-greater

f. string-greater-or-equal – lexicographical comparison

g. time-greater-than

h. date-greater-than

i. datetime-greater-than

j. time-greater-than-or-equal

k. date-greater-than-or-equal

l. datetime-greater-than-or-equal

m. string-match – regular expression match, second attribute representing the regular expression.  This function can be used in <Match> and <Condition> elements – attribute specified in the <Match> is the second argument.

n. x500Name-match – semantics for matching specified by the corresponding standard. Second attribute represents the matching expression.  This function can be used in <Match> and <Condition> elements – attribute specified in the <match> is the second argument.

o. rfc822Name-match – semantics for matching specified by the corresponding standard. Second attribute represents the matching expression.  This function can be used in <Match> and <Condition> elements – attribute specified in the <match> is the second argument.

23. Set functions.  Most of this functions take argument of type set<type> - see note above about compaction of presented sequence.  X denotes each supported type (“integer”, “decimal” and so on).  Test for an empty set can be done using length function.

a. X-intersection – for each supported type.

b. X-union – for each supported type.

c. X-member-of – for each supported type.  This functions can be used in <Match> and <Condition> elements.

d. X-first – for each supported type.  Returns first element of the presented sequence.

e. X-rest – for each supported type.  Returns all, but the first element of the presented sequence (does not compact it).

f. X-length – for each supported type. Returns size of the sequence.

All functions, their return types, arguments, are listed in the accompanying table. 

