

XACML RBAC Profile

Working draft 01, 5 June 2003

Document identifier:

wd-xacml-rbac-profile-01

Location:

http://www.oasis-open.org/apps/org/workgroup/xacml/documents.php
Editor:

Anne Anderson, Sun Microsystems (anne.anderson@sun.com)

Contributors:

Abstract:

This specification defines a profile for the use of XACML in expressing policies that use role based access control (RBAC).

Status:

This version of the specification is a working draft of the committee. As such, it is expected to change prior to adoption as an OASIS standard.

If you are on the xacml@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to the xacml-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to xacml-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Table of contents

Introduction
2

Terminology
3

Role
4

Policies
4

Example
6

Permission <PolicySet> for manager role
6

Permission <PolicySet> for employee role
8

Role <PolicySet> for manager role
9

Role <PolicySet> for employee role
9

Assigning and Enabling Role Attributes
10

Implementing the RBAC Model
12

Core RBAC
12

Hierarchial RBAC
13

Separation of Duty
14

Profile
16

Role Assignment or Enablement
17

Access Control
17

Introduction

{Non-normative}

This specification defines a profile for the use of the OASIS eXtensible Access Control Markup Language (XACML) to the the requirements for role based access control (RBAC) as specified in [RBAC] . Use of this Profile requires no changes to standard XACML 1.0.

The specification begins with an explanation of the building blocks from which the RBAC solution is constructed. A full example illustrates these building blocks. The specification then discusses how these building blocks may be used to implement the various elements of the RBAC model presented in [RBAC] . Finally, the normative section of the specification describes compliant uses of the building blocks in implementing an RBAC solution.

This proposal assumes the reader is somewhat familiar with XACML. A brief overview sufficient to understand these examples is available in [XACMLIntro].

Terminology

{Non-normative}

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [RFC2119].

attribute - In this Profile, the term “attribute” refers to an XACML <Attribute>. An XACML <Attribute> is an element in an XACML Request having among its components an attribute name identifier, a data type identifier, and an attribute value. Each <Attribute> is associated either with one of the subjects (Subject Attribute), the protected resource (Resource Attribute), the action to be taken on the resource (Action Attribute), or the environment (Environment Attribute) of the Request. Attributes are referenced in a policy by using an <AttributeSelector> (an Xpath expression) or one of the following: <SubjectAttributeDesignator>, <ResourceAttributeDesignator>, <ActionAttributeDesignator>, or <EnvironmentAttributeDesignator>.

junior role – In a role hierarchy, Role A is junior to Role B if Role B inherits all the permissions associated with Role A.

multi-role permissions – a set of permissions for which a user must hold more than one role simultaneously in order to gain access.

PDP - Policy Decision Point. An entity that evaluates an access request against one or more policies to produce an access decision.

permission – the ability or right to perform some action on some resource, possibly only under certain specified conditions.

RBAC – Role based access control. A model for controlling access to resources where permitted actions on resources are identified with roles rather than with individual subject identities.

role – A job function within the context of an organization with some associated semantics regarding the authority and responsibility conferred on the user assigned to the role [RBAC] .

senior role – In a role hierarchy, Role A is senior to Role B if Role A inherits all the permissions associated with Role B.

policy – A set of rules indicating which subjects are permitted to access which resources using which actions under which conditions.

A few liberties have been taken with the XACML syntax in the examples in this Profile in order to make them more readable.

The xml DataType attributes are omitted.

PolicySetIds and PolicyIds have been expressed as strings rather than as URNs.

The URNs for standard FunctionIds, AttributeIds, and Combining Algorithms have been shortened.

Anyone familiar with XACML should be able to convert the examples to schema- and specification-compliant XACML policies easily.

Role

{Non-normative}

In this Profile, roles are expressed as XACML Subject Attributes.

Role attributes may be expressed in either of two ways, depending on the preferences of the application environment. In some environments there may be a small number of “role attributes”, where the name of each such attribute is some name indicating “role”, and where the value of each such attribute indicates the name of the role held. For example, in this first type of environment, there may be one “role attribute” having the identifier urn:someapp:attributes:role. The possible roles are values for this one attribute, and might be officer, manager, and employee. This way of expressing roles works best with the XACML way of expressing policies.

Alternatively, in other application environments, there may be a number of different attribute identifiers, each indicating a different role. For example, in this second type of environment, there might be three attribute identifiers – urn:someapp:attributes:officer-role, urn:someapp:attributes:manager-role, and urn:someapp:attributes:employee-role. In this case the value of the attribute may be empty or it may contain various parameters associated with the role. XACML policies can handle roles expressed in this way, but not as naturally as in the first way.

XACML supports multiple subjects per access request, indicating various entities that may be involved in making the request. For example, there is usually a human user who initiates the request, at least indirectly. There are usually one or more applications or code bases that generate the actual low-level request on behalf of the user. There is some computing device on which the application or code base is executing, and this device may have an identity such an IP address. XACML identifies each such Subject with a SubjectCategory xml attribute that indicates the type of subject being described. For example, the human user has a SubjectCategory of access-subject. The application that generates the access request has a SubjectCategory of codebase. In this Profile, a role attribute may be associated with any of the types of subjects involved in making an access request.

Policies

{Non-normative}

In this Profile, there are four types of policies.

Role <PolicySet> - a Role <PolicySet> associates holders of a given role attribute with a Permission <PolicySet> that contains the actual permissions associated with the given role. The <Target> element of a Role <PolicySet> limits the applicability of the <PolicySet> to subjects holding the given role attribute. Each Role <PolicySet> references a single corresponding Permission <PolicySet> but does not contain any other <Policy> or <PolicySet> elements.

Permission <PolicySet> - a Permission <PolicySet> contains the actual permissions associated with a given role. It contains <Policy> elements and <Rules> that describe the resources and actions that subjects are permitted to access, along with any further conditions on that access like time of day. A given Permission <PolicySet> may also contain references to Permission <PolicySets> associated with other roles that are junior to the given role, thereby allowing the given Permission <PolicySet> to inherit all permissions associated with role of the the referenced Permission <PolicySet>. The <Target> element of a Permission <PolicySet> must not limit the subjects to which the <PolicySet> is applicable.

Separation of Duty <PolicySet> - a Separation of Duty <PolicySet> defines restrictions on the set of roles that can be exercised by a given Subject. Such a <PolicySet> contains a <Policy> and <Rule> that specify the role set restrictions. The Separation of Duty <PolicySet> also contains references to all the Role <PolicySet> instances. Use of a Separation of Duty <PolicySet> is optional.

Role Assignment <Policy> or <PolicySet> - a Role Assignment <Policy> or <PolicySet> defines which roles can be enabled or assigned to which subjects. It may also specify restrictions on combinations of roles or total number of roles assigned to or enabled for a given subject. This type of policy is used by the entity that assigns role attributes to users or by the entity that enables role attributes during a user's session. Use of a Role Assignment <Policy> or <PolicySet> is optional.

Permission <PolicySet> instances must be stored in the policy repository in such a way that they can never be used as the initial policy for an XACML PDP. Permission <PolicySet> instances must be reachable only through the corresponding Role <PolicySet>. This is because, in order to support hierarchical roles, a Permission <PolicySet> must be applicable to every subject. The Permission <PolicySet> depends on its corresponding Role <PolicySet> to ensure that only subjects holding the corresponding role attribute will gain access to the permissions in the given Permission <PolicySet>.

If a Separation of Duty <PolicySet> is used, then Role <PolicySet> instances also must be stored in the policy repository in such a way that they can never be used as the initial policy for an XACML PDP. In this case, Role <PolicySet> instances must be reachable only through the Separation of Duty <PolicySet>.

Use of separate Role <PolicySet> and Permission <PolicySet> instances allows support for Hierarchical RBAC, where a more senior role can acquire the permissions of a more junior role. A Permission <PolicySet> that does not reference other Permission <PolicySet> elements could be an XACML <Policy> rather than a <PolicySet>. Requiring it to be a <PolicySet>, however, allows its associated role to become part of a role hierarchy at a later time without requiring any change to the definition of the Role <PolicySet> and other Permission <PolicySet> elements that may reference the given Permission <PolicySet>.

Multi-Role Permissions

In this Profile, it is possible for express policies where a user must hold several roles simultaneously in order to gain access to certain permissions. For example, changing the care instructions for a hospital patient may require that the Subject performing the action have both the physician role and the staff role.

These policies may be expressed using a Role <PolicySet> where the <Target> element requires the Subject to have all necessary role attributes. This is done by using a single <Subject> element containing multiple <SubjectMatch> elements. The associated Permission <PolicySet> should specify the permissions associated with Subjects who simultaneously have all the specified roles enabled.

The Permission <PolicySet> associated with a multi-role policy may reference the Permission <PolicySet> instances associated with other roles, and thus may inherit permissions from other roles. The permissions associated with a given Multi-Role <PolicySet>, however, may be inherited only by other multi-role policies that require a superset of the roles required by the given multi-role policy. This is because the <Target> of the Role <PermissionSet> associated with the multi-role policy will screen out any Subject that does not possess at least the set of roles required by the given multi-role policy.

Example

{Non-normative}

Assume an organization uses two roles, manager and employee. In this example, they are expressed as two separate values for a single XACML Attribute called “Role”. An employee has permission to create a purchase order. A manager has permission to sign a purchase order, plus any permissions associated with the employee role.

According to this Profile, there will be two Permission <PolicySet> instances: one for the manager role and one for the employee role. The manager Permission <PolicySet> will give any Subject the specific permission to sign a purchase order and will reference the employee Permission <PolicySet> in order to inherit its permissions. The employee Permission <PolicySet> will give any Subject the permission to create a purchase order.

According to this Profile, there will also be two Role <PolicySet> instances: one for the manager role and one for the employee role. The manager Role <PolicySet> will contain a <Target> requiring that the Subject hold a Role attribute with a value of manager. It will reference the manager Permission <PolicySet>. The employee Role <PolicySet> will contain a <Target> requiring that the Subject hold a Role attribute with a value of employee. It will reference the employee Permission <PolicySet>.

The actual XACML policies implementing this example follow. An example of a Separation of Duty <PolicySet> is included in the Separation of Duty section of Implementing the RBAC Model. An example of a Role Assignment Policy is included in the Assigning and Enabling Role Attributes Section.

Permission <PolicySet> for manager role

The following Permission <PolicySet> contains the permissions associated with the manager role. Access to this <PolicySet> is gained only by reference from the manager Role <PolicySet>.

<PolicySet PolicySetId=”Permission PolicySet for manager role”>

 <Target>

 <Subjects>

 <AnySubject/>

 </Subjects>

 <Resources>

 <AnyResource/>

 </Resources>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

 <Policy PolicyId=”Permissions specifically for the manager role”

 RuleCombiningAlgorithm=”permit-overrides”>

 <Target>

 <Subjects>

 <AnySubject/>

 </Subjects>

 <Resources>

 <AnyResource/>

 </Resources>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

 <Rule RuleId=”Permission to sign a purchase order”

 Effect=”Permit”>

 <Target>

 <Subjects>

 <AnySubject/>

 </Subjects>

 <Resources>

 <Resource>

 <ResourceMatch MatchId=”string-match”>

 <AttributeValue>purchase order</AttributeValue>

 <ResourceAttributeDesignator

 AttributeId=”resource-id”/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="string-match”>

 <AttributeValue>sign</AttributeValue>

 <ActionAttributeDesignator AttributeId=”action-id”/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

 </Policy>

 <PolicySetIdReference>Permission PolicySet for employee role</PolicySetIdReference>

</PolicySet>

Permission <PolicySet> for employee role

The following Permission <PolicySet> contains the permissions associated with the employee role. Access to this <PolicySet> is gained only by reference from the employee Role <PolicySet> or by reference from the more senior manager Role <PolicySet> via the manager Permission <PolicySet>.

<PolicySet PolicySetId=”Permission PolicySet for employee role”>

 <Target>

 <Subjects>

 <AnySubject/>

 </Subjects>

 <Resources>

 <AnyResource/>

 </Resources>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

 <Policy PolicyId=”Permissions specifically for the employee role”

 RuleCombiningAlgorithm=”permit-overrides”>

 <Target>

 <Subjects>

 <AnySubject/>

 </Subjects>

 <Resources>

 <AnyResource/>

 </Resources>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

 <Rule RuleId=”Permission to create a purchase order”

 Effect=”Permit”>

 <Target>

 <Subjects>

 <AnySubject/>

 </Subjects>

 <Resources>

 <Resource>

 <ResourceMatch MatchId=”string-match”>

 <AttributeValue>purchase order</AttributeValue>

 <ResourceAttributeDesignator

 AttributeId=”resource-id”/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="string-match”>

 <AttributeValue>create</AttributeValue>

 <ActionAttributeDesignator AttributeId=”action-id”/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

 </Policy>

 <PolicySetIdReference>Permission PolicySet for employee role</PolicySetIdReference>

</PolicySet>

Role <PolicySet> for manager role

The following Role <PolicySet> is applicable (according to its <Target>) only to Subjects who hold a Role attribute with a value of manager. The <PolicySetIdReference> points to the Permission <PolicySet> associated with the manager role. That Permission <PolicySet> may be viewed above.

<PolicySet PolicySetId=”Role PolicySet for manager role”>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId=”string-equal”>

 <AttributeValue>manager</AttributeValue>

 <SubjectAttributeDesignator AttributeId=”role”/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 <Resources>

 <AnyResource/>

 </Resources>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

 <PolicySetIdReference>Permission PolicySet for manager role</PolicySetIdReference>

</PolicySet>

Role <PolicySet> for employee role

The following Role <PolicySet> is applicable (according to its <Target>) only to Subjects who hold a Role attribute with a value of employee. The <PolicySetIdReference> points to the Permission <PolicySet> associated with the employee role. That Permission <PolicySet> may be viewed above.

<PolicySet PolicySetId=”Role PolicySet for employee role”>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId=”string-equal”>

 <AttributeValue>employee</AttributeValue>

 <SubjectAttributeDesignator AttributeId=”role”/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 <Resources>

 <AnyResource/>

 </Resources>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

 <PolicySetIdReference>Permission PolicySet for employee role</PolicySetIdReference>

</PolicySet>

Assigning and Enabling Role Attributes

{Non-normative}

The assignment of various role attributes to users and the enabling of those attributes within a session are outside the scope of the XACML PDP. There must be one or more separate entities defined to perform these functions.

Such entities may use an XACML Role Assignment <Policy> or <PolicySet> to determine which users are allowed to have various role attributes enabled, and under what conditions.

Role Assignment policies are a different set from the Role <PolicySet> and Permission <PolicySet> instances used to determine the access permissions associated with each role. This Profile assumes that the presence in the XACML Request Context of a role attribute for a given user (Subject) is a valid assignment at the time the access decision is requested

The following example illustrates a Role Assignment <Policy>. It contains an XACML <Rule>s stating that Anne and Seth and Yassir are allowed to have the employee role enabled between the hours of 9am and 5pm, and another XACML <Rule> stating that Steve is allowed to have the manager role enabled without restrictions.

<Policy PolicyId=”Role Assignment Policy”

 RuleCombiningAlgId=”permit-overrides”>

<Target>

 <Subjects><AnySubject/></Subjects>

 <Resources><AnyResource/></Resources>

 <Actions><AnyAction/></Actions>

</Target>

<Rule RuleId=”employee role” Effect=”Permit”>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId=”string-equal”>

 <AttributeValue>Seth</AttributeValue>

 <SubjectAttributeDesignator AttributeId=”subject-id”/>

 </SubjectMatch>

 </Subject>

 <Subject>

 <SubjectMatch MatchId=”string-equal”>

 <AttributeValue>Anne</AttributeValue>

 <SubjectAttributeDesignator Attributeid=”subject-id”/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 <Resources>

 <Resource>

 <ResourceMatch MatchId=”string-equal”>

 <AttributeValue>employee</AttributeValue>

 <ResourceAttributeDesignator AttributeId=”Role”/>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId=”string-equal”>

 <AttributeValue>enable</AttributeValue>

 <ActionAttributeDesignator AttributeId=”action-id”/>

 </Action>

 </Actions>

 </Target>

 <Condition FunctionId=”and”>

 <Apply FunctionId=”time-greater-than-or-equal”>

 <Apply FunctionId=”time-one-and-only”>

 <EnvironmentAttributeDesignator AttributeId=”current-time”/>

 </Apply>

 <AttributeValue>9h</AttributeValue>

 </Apply>

 <Apply FunctionId=”time-less-than-or-equal”>

 <Apply FunctionId=”time-one-and-only”>

 <EnvironmentAttributeDesignator AttributeId=”current-time”/>

 </Apply>

 <AttributeValue>17h</AttributeValue>

 </Apply>

 </Condition>

</Rule>

<Rule RuleId=”manager role” Effect=”Permit”>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId=”string-equal”>

 <AttributeValue>Steve</AttributeValue>

 <SubjectAttributeDesignator AttributeId=”subject-id”/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 <Resources>

 <Resource><Resource>

 <ResourceMatch MatchId=”string-equal”>

 <AttributeValue>manager</AttributeValue>

 <ResourceAttributeDesignator AttributeId=”Role”/>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId=”string-equal”>

 <AttributeValue>enable</AttributeValue>

 <ActionAttributeDesignator AttributeId=”action-id”/>

 </Action>

 </Actions>

 </Target>

</Rule>

</Policy>

This policy would be consulted by the entity that makes role Attributes available for use within a user's session (and thus eligible for being included in an XACML Request Context).

Implementing the RBAC Model

{Non-normative}

The following sections describe how to use XACML policies to implement various components of the RBAC model as described in [RBAC] .

Core RBAC

Core RBAC [RBAC] includes the following five basic data elements:

Users

Roles

Objects

Operations

Permissions

Users are implemented using XACML Subjects. Any of the XACML Subject Categories may be used, as appropriate.

Roles are expressed using one or more XACML Subject Attributes. The set of roles is very application and policy domain specific, and it is very important that different uses of roles not be confused. For these reasons, XACML is not attempting to define any standard set of roles. It is recommended that each application or policy domain agree on a unique set of AttributeIds, DataTypes, and <AttributeValue> values that will be used for the various roles relevant to that domain.

Objects are expressed using XACML Resources.

Operations are expressed using XACML Actions.

Permissions are expressed using XACML Role <PolicySet> and Permission <PolicySet> instances as described in previous sections.

Core RBAC requires support for multiple users per role, multiple roles per user, multiple permissions per role, and multiple roles per permission. Each of these requirements can be satisfied by XACML policies based on this Profile.

XACML allows multiple Subjects to be associated with a given role attribute. XACML Role <PolicySet>s defined in terms of possession of a particular role <Attribute> and <AttributeValue> will apply to any requesting user for which that role <Attribute> and <AttributeValue> are in the XACML Request Context.

XACML allows multiple role attributes to be associated with a given Subject. If a Subject has multiple roles enabled, then any Role <PermissionSet> instance applying to any of those roles may be evaluated, and the permissions in the corresponding Permission <PolicySet> will be permitted. As described in the Policies Section, it is even possible to define policies that require a given Subject to have multiple role attributes enabled at the same time. In this case, the permissions associated with the multiple-role requirement will apply only to a Subject having all the necessary role attributes at the same time.

The Permission <PolicySet> associated with a given role may allow access to multiple resources using multiple actions. XACML has a rich set of constructs for composing permissions, so there are multiple ways in which multi-permission roles may be expressed.

Any Role A may be associated with a Permission <PolicySet> B by including a <PolicySetIdReference> to Permission <PolicySet> B in the Permission <PolicySet> associated with the Role A. In this way, the same set of permissions may be associated with more than one role.

In addition to the basic Core RBAC requirements, XACML policies using this Profile can also express arbitrary conditions on the application of particular permissions associated with a role. Such conditions might include limiting the permissions to a given time period during the day, or limiting the permissions to role holders who also possess some other attribute, whether it is a role attribute or not.

Hierarchial RBAC

Hierarchical RBAC [RBAC] expands Core RBAC with the ability to define inheritance relations between roles. For example, Role A may be defined to inherit all permissions associated with Role B. In this case, Role A is considered to be senior to Role B in the role hierarchy. If Role B in turn inherits permissions associated with Role C, then Role A will also inherit those permissions by virtue of being senior to Role B.

XACML policies using this Profile can implement role inheritance by including a <PolicySetIdReference> to the Permission <PolicySet> associated with one role inside the Permission <PolicySet> associated with another role. The role that includes the <PolicySetIdReference> will then inherit the permissions associated with the referenced role.

This Profile structures policies in such a way that inheritance properties may be added to a role at any time without requiring changes to <PolicySet> instances associated with any other roles. An organization may not initially use role hierarchies, but may later decide to make use of this functionality.

Separation of Duty

Separation of Duty is a way of avoiding conflicts of interest associated with conflicting roles. A user with one role attribute is not allowed to have some other, conflicting role attribute. “Static Separation of Duty relations reduce the number of potential permissions that can be made available to a user by placing constraints on the users that can be assigned to a set of roles. Dynamic Separation of Duty relations, like SSD relations, are intended to limit the permissions that are available to a user. However DSD relations differ from SSD relations by the context in which these limitations are imposedas limiting the entire space of role attributes that may be associated with a user.” [RBACIntro]
XACML can be used to handle the requirements of Static or Dynamic Separation of Duty in a number of ways. This Profile recommends use of a Separation of Duty <PolicySet> or a Policy Assignment <PolicySet>.

Separation of Duty <PolicySet>

A Separation of Duty <PolicySet> prevents a user who possesses conflicting role attributes from gaining any access to resources. It acts as a gatekeeper to all the other Role <PolicySet> and Permission <PolicySet> instances. An example of a Separation of Duty <PolicySet> follows. This <PolicySet> says a user may not hold both the employee and contractor roles at the time an access is requested.

<PolicySet PolicySetId=”Separation of Duty PolicySet”

 PolicyCombiningAlgId=”deny-overrides”>

 <Target>

 <Subjects>

 <AnySubject/>

 </Subjects>

 <Resources>

 <AnyResource/>

 </Resources>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

 <Policy PolicyId=”Can't be contractor AND employee”

 RuleCombiningAlgId=”deny-overrides”>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId=”string-equal”>

 <AttributeValue>employee</AttributeValue>

 <SubjectAttributeDesignator AttributeId=”Role”/>

 </SubjectMatch>

 <SubjectMatch MatchId=”string-equal”>

 <AttributeValue>contractor</AttributeValue>

 <SubjectAttributeDesignator AttributeId=”Role”/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 <Resources>

 <AnyResource/>

 </Resources>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

 <Rule RuleId=”Deny role combination” Effect=”Deny”/>

 </Policy>

 <PolicySetIdReference>Role PolicySet for employee role</PolicySetIdReference>

 <PolicySetIdReference>Role PolicySet for contractor role</PolicySetIdReference>

 <PolicySetIdReference>Role PolicySet for manager role</PolicySetIdReference>

</PolicySet>

The Policy or Policies that specify the role restrictions in a Separation of Duty <PolicySet> can make use of all the expressiveness of XACML. Restrictions can be placed on the total number of roles held at once, on particular combinations of roles, or on various combinations of conditions.

Role Assignment <PolicySet>

In some environments, it is desirable to prevent a user from being associated with conflicting roles in the first place. Since an XACML PDP does not assign attributes to users, an XACML PDP will not by itself prevent assignment of conflicting role attributes to a user. The entity that performs role assignment or role enablement, however, may make use of a Role Assignment <PolicySet> that contains Separation of Duty restrictions.

The following example illustrates this usage of a Role Assignment <PolicySet> containing a Separation of Duty restriction. It allows Seth or Anne to enable any two out of the set of possible role attributes:

<Rule RuleId=”employee role”>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId=”string-equal”>

 <AttributeValue>Seth</AttributeValue>

 <SubjectAttributeDesignator AttributeId=”subject-id”/>

 </SubjectMatch>

 </Subject>

 <Subject>

 <SubjectMatch MatchId=”string-equal”>

 <AttributeValue>Anne</AttributeValue>

 <SubjectAttributeDesignator Attributeid=”subject-id”/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 <Resources>

 <AnyResource/>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId=”string-equal”>

 <AttributeValue>enable</AttributeValue>

 <ActionAttributeDesignator AttributeId=”action-id”/>

 </Action>

 </Actions>

 </Target>

 <Condition FunctionId=”integer-less-than-or-equal”>

 <Apply FunctionId=”string-bag-size”>

 <ResourceAttributeDesignator AttributeId=”Role”/>

 </Apply>

 <AttributeValue>2</AttributeValue>

 </Condition>

</Rule>

Again, the full expressiveness of XACML may be used in specifying role assignment restrictions. Restrictions may be placed on assignment or enablement of particular combinations of roles, on the total number of roles assigned or enabled, or on arbitrary other role assignment or enablement conditions.

Profile

{Normative}

Roles SHALL be expressed using one or more XACML Attributes. Each application domain using this Profile for role based access control SHALL define or agree upon one or more AttributeId values to be used for role attributes. Each such AttributeId value SHALL be associated with a set of permitted values and their DataTypes. Each permitted value for such an AttributeId SHALL have well-defined semantics for the use of the corresponding value in policies.

Role Assignment or Enablement

The system entity or entities responsible for issuing role attributes to users and for enabling those attributes for use during a given session MAY use an XACML Role Assignment <Policy> or <PolicySet> to determine which users are allowed to enable which roles and under which conditions.

Access Control

Role based access control SHALL be implemented using three types of <PolicySet> elements, each with specific functions and requirements as follows. System entities that control access to resources SHALL use XACML Role <PolicySet> and Permission <PolicySet> policies. Such entities MAY use an XACML Separation of Duty <PolicySet>.

For each role, one Role <PolicySet> SHALL be defined. Such a <PolicySet> SHALL contain a <Target> element making the <PolicySet> applicable only to holders of the XACML AttributeId and <AttributeValue> associated with the given role; the <Target> element SHALL be applicable to any Resource and any Action. Each Role <PolicySet> SHALL contain a single <PolicySetIdReference> element that references the unique Permission <PolicySet> associated with the role. The Role <PolicySet> SHALL NOT contain any other <Policy>, <PolicySet>, <PolicyIdReference>, or <PolicySetIdReference> elements.

For each role, one Permission <PolicySet> SHALL be defined. Such a <PolicySet> SHALL contain <Policy> and <Rule> elements that specify the types of access permitted to holders of the attribute associated with the given role. The <Target> of the <PolicySet> and its included or referenced <PolicySet>, <Policy>, and <Rule> elements SHALL NOT limit the subjects to which the Permission <PolicySet> is applicable; that is, the <Subjects> element of each <Target> element shall contain an <AnySubject/> element.

If a given role inherits permissions from one or more other roles, then the Permission <PolicySet> for the given role SHALL include a <PolicySetIdReference> element for each other role. Each such <PolicySetIdReference> shall reference the Permission <PolicySet> associated with the other role from which the given role inherits.

The organization of any repository used for policies and the configuration of the PDP SHALL ensure that the PDP can never use a Permission <PolicySet> as the PDP's initial policy.

If a Static Separation of Duty <PolicySet> is used, then the organization of any repository used for policies and the configuration of the PDP SHALL ensure that the PDP can never use a Role <PolicySet> or Permission <PolicySet> as the PDP's initial policy.

References

[XACMLIntro]
A Brief Introduction to XACML, http://csrc.nist.gov/rbac/rbac-std-ncits.pdf, Proposed ANSI Standard, BSR INCITS 359, 4/4/2003.

[RBAC]

Role Based Access Control, http://csrc.nist.gov/rbac/rbac-std-ncits.pdf, Proposed ANSI Standard, BSR INCITS 359, 4/4/2003.

[RBACIntro]
D. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, R. Chandramouli, Proposed NIST Standard for Role-Based Access Control, http://csrc.nist.gov/rbac/rbacSTD-ACM.pdf, ACM Transactions on Information and System Security, Vol. 4, No.3, August 2001, Pages 224-274.

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XACML]
eXtensible Access Control Markup Language, http://csrc.nist.gov/rbac/rbac-std-ncits.pdf, Proposed ANSI Standard, BSR INCITS 359, 4/4/2003.

Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright (C) OASIS Open 2003. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

wd-xacml-rbac-profile-01.doc

5 June 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 17 of 19

