
Locating and retrieving policies that use url-match in
their target

Background
Suppose we have policies governing access to Web resources. Here’s an example …

<Policy PolicyId=”p1”>
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId=”string-equal”>
 <AttributeValue>customer</AttributeValue>
 <SubjectAttributeDesignator AttributeId=”role”/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch MatchId=”url-match”>
 <AttributeValue>www.example.com/*</AttributeValue>
 <ResourceAttributeDesignator AttributeId=”resource-id”/>
 </ResourceMatch>
 <ResourceMatch MatchId=”url-match”>
 <AttributeValue>*.cgi</AttributeValue>
 <ResourceAttributeDesignator AttributeId=”resource-id”/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId=”string-equal”>
 <AttributeValue>execute</AttributeValue>
 <ActionAttributeDesignator AttributeId=”action-id”/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
</Policy>

It says that “execute” access to files with the extension “.cgi” on the server
“www.example.com/” is to be granted to access-subjects who occupy the role
“customer”.

Storage and retrieval using SQL
If we want to be able to store and retrieve such policies by means of an SQL database,
then the main database table, Policies, would have the following columns:

Entity (Subject, Resource, Action, Environment)
MatchId
AttributeId

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

AttributeValue
PolicyId

So, our example policy would be represented in four rows of the Policies table:

Entity MatchId AttributeId AttributeValue PolicyId
Subject string-equal role customer p1
Resource url-match resource-id www.example.com/* p1
Resource url-match resource-id *.cgi p1
Action string-equal action-id execute p1

PDP topic
At the time of deployment, a PDP is assigned a “topic”. Syntactically, a topic is an
XACML <Target>. But, semantically, it defines the set of requests to which the PDP can
respond. Upon receiving an access request, the PDP executes all policies applicable to its
topic, although certain of those policies may be found not to be applicable to the
particular request.

Here is an example of a topic for a PDP that can respond to requests for execute or read
access to resources in the folder “www.example.com/resources/” and all of its sub-
folders:

<Topic>
 <Resources>
 <Resource>
 <ResourceMatch MatchId=”url-match”>
 <AttributeValue>www.example.com/resources/*</AttributeValue>
 <ResourceAttributeDesignator AttributeId=”resource-id”/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId=”string-equal”>
 <AttributeValue>execute</AttributeValue>
 <ActionAttributeDesignator AttributeId=”action-id”/>
 </ActionMatch>
 </Action>
 <Action>
 <ActionMatch MatchId=”string-equal”>
 <AttributeValue>read</AttributeValue>
 <ActionAttributeDesignator AttributeId=”action-id”/>
 </ActionMatch>
 </Action>
 </Actions>
</Topic>

Our example policy, p1, is applicable to some of the requests that our PDP may have to
respond to. So, the PDP should locate, retrieve and load p1.

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

Using the PDP’s topic definition, we have to procedurally generate SQL queries that will
retrieve all applicable policies1. The applicable policies are all those whose targets
intersect with the topic. Or, put another way: applicable policies are those whose targets
are identical to, more general than or more specific than the PDP’s topic.

The query must therefore be a sequence of select statements for identical, more specific
and more general targets. The identical and more specific cases are relatively easy to
address: the select statement must include a “where” clause with a wild-card where more
specific nodes in the tree would occur. The more general case requires multiple select
statements with “where” clauses that truncate the tree structure at successively higher
nodes.

file-system-style wild-card
If URL matching uses a simple file-system-style wild-card that can be placed either at the
beginning or at the end of a match-string, then it is a straightforward matter to
programmatically construct a set of SQL select statements that retrieve all policies
applicable to a PDP’s topic.

Regular expression
It has been demonstrated that one could express any URL match string using regular
expressions. However, regular expressions are much more expressive than this
application demands; being capable of expressing patterns that are of no interest
whatsoever in URL matching and which will prevent programmatic generation of SQL
queries for the purpose of locating and retrieving applicable policies.

Regular expression subset
Maybe there is a subset of the regular expression syntax that (when used in Target) can
facilitate this use case. If so, it would not entail a brand new implementation of the
regular expression processing logic, leaving out superfluous features, it would merely
involve pre-screening expressions and throwing an exception upon encountering one that
did not limit itself to the legal subset. Perhaps, the full generality of regular expressions
should be allowed in url matches that occur outside the <Target> element.

1 Note that I’m not talking about doing this when the request is received; I’m talking about doing it at
deployment time. So, performance isn’t the primary concern.

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

