

Policy_languages-managing_with_xacml-v03
9 Sep 2004

1

Managing with XACML

Introduction
A broad range of languages have been defined for expressing policy such that it can be
enforced by a machine. In most cases, these languages are tailored to a particular
application domain, such as network management, access-control, privacy or digital
rights. Few attempts have been made to define a language that can serve more than one
domain.

The first major division in the taxonomy of policy languages is that between
authorization and management policies. Authorization policy specifies the circumstances
under which an action may be allowed, whereas management policy specifies the actions
that should be taken when specified circumstances arise.

Ponder is the only language known to the author that was designed to address the
requirements of both of these policy categories.

XACML was defined primarily for expressing authorization policy. But, in attempting to
deal with the side-effects of authorization, its designers gave XACML some of the
features necessary for expressing management policy.

In this paper, we attempt to identify deficiencies in the current definition of XACML in
relation to its use as a language for expressing management policy.

Management policy
Management policy statements commonly contain three main clauses: event, condition
and action. The semantics of such statements are that, when the specified event occurs
and if the specified condition holds, then the specified action should be taken.
Management policies find application in the fields of network (and other resource)
management and work-flow applications (amongst others).

Management policy in XACML
The proposed way of mapping the constructs of management policy to XACML
constructs is shown in Table 1.
Management policy XACML construct
Event Target
Condition Condition
Action Obligation

Table 1 - Correspondence between management policy and XACML constructs

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

Policy_languages-managing_with_xacml-v03
9 Sep 2004

2

XACML Constructs

Primary constructs

Target
An XACML “Target” is a declarative-style construct for expressing a simple predicate
over attributes of the subject, resource, action and environment. It was designed to
express part of the authorization post-condition and to allow efficient indexing of policy
statements. However, it is readily capable of expressing an event definition, such as a
connection made to port 23:

 Resource equals “port 23” and Action equals “connect”

Condition
An XACML “Condition” is a declarative-style construct for expressing an arbitrarily
complex predicate over attributes of the subject, resource, action and environment. It was
designed to express the authorization pre-condition. However, it is readily capable of
expressing a management policy condition.

Obligation
An XACML “Obligation” is an imperative-style expression, consisting of an instruction
with parameters. Obligations represent the second part of the authorization post-
condition. The instructions represented by the obligations are to be executed
independently. There is no implied sequence or interdependence between the individual
instructions.

Obligations may express the action part of a management policy.

Secondary constructs

Effect
The XACML “Effect” is the result of evaluating a condition. Ignoring fault conditions, it
is a Boolean with a value of either “Permit” or “Deny”.

The XACML Effect has a secondary function: it triggers obligations. Each obligation is
tagged with the Effect value for which it must be executed. When used in authorization
policy, the Effect can cause different instructions to be executed depending upon the
authorization decision.

When used in management policy, Effect can identify management actions associated
with particular conditions.

Combining algorithm
An XACML “combining algorithm” operates on the individual Effect values in a set of
conditions to arrive at an overall Effect for the set. For all the combining algorithms

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

Policy_languages-managing_with_xacml-v03
9 Sep 2004

3

defined by XACML, the overall Effect may be determined without evaluating the
complete set of conditions, and XACML allows this partial evaluation. For instance, the
“deny-overrides” combining algorithm can terminate as soon as it encounters the first
true condition whose Effect value is “deny”, thereby leaving any remaining conditions
unevaluated, even though one or more of those conditions may hold.

The impact of this is that unevaluated conditions may contain obligations that don’t get
triggered, because their Effect values were not calculated.

XACML enhancements
The primary output of a management policy is the set of management actions, expressed
in XACML, using obligations. Effect, which is the primary output of an authorization
policy, serves merely to trigger obligations. Expressing management policy requires
combining algorithms that evaluate all conditions without terminating prematurely. This
would not require a change to core XACML, only the definition of a new combining
algorithm.

XACML defines Effect to be a Boolean with values “Permit” and “Deny”. These values
are entirely appropriate for authorization policy, but are not appropriate for management
policy. Values such as Triggered and NotTriggered would be more suitable. Such a
change would be entirely cosmetic.

Procedural constructs, such as “sequence” and “choice” for sets of obligations would be a
helpful addition.

Conclusions
XACML has many of the features required to express management policy. Some trivial
extensions are required, such as the definition of a new combining algorithm. Some
cosmetic changes are also desirable, such as the ability to assign new values to the Effect
variable. More significantly, it is necessary to be able to express sequences and choices
of obligations.

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

