This document describes a problem with the current delegation processing model in draft 16. The current draft specifies that indeterminate results are dropped during reduction. There are some potential problems with this. I will explain the problem and propose a solution here. Both the problem description and the proposed solution work done by Olav Bandmann at SICS. I am just presenting it here.
The Problem
Consider the following policy set in the context of an access request (whose contents do not matter in this case):

[image: image1.emf]PolicySet

DenyOverrides Algorithm

Evalutes to Deny

Trusted Access Policy

Evaluates to Permit

Trusted Admin Policy

Non-Trusted Access Policy

Evalutes to Deny

Reduction supports the access policy


The policy set contains three policies. There is one trusted access policy which evaluates to Permit. There is also one non-trusted access policy which evaluates to deny. This policy is reduced and there is one trusted admin policy which supports the access policy. The DenyOverrides algorithm of the policy set then means that the policy set evaluates to Deny.
Now, there is some disturbance during the evaluation of the non-trusted access policy:
[image: image2.emf]PolicySet

DenyOverrides Algorithm

Evalutes to Permit

Trusted Access Policy

Evaluates to Permit

Trusted Admin Policy

Non-Trusted Access Policy

Evalutes to Indeterminate

Some disturbance makes the

access policy indeterminate.

The access policy is dropped.


This causes the non-trusted access policy to be dropped as reduction is defined in draft 16. The policy set evaluates to Permit.
This is undesirable since an error has caused the policy set to evaluate to Permit. It would have been better that the policy set would have evaluated to indeterminate, so the error would have been detected by the PEP. The PEP bias would then determine the action of the PEP. (The policy evaluation algorithm should not presume a PEP bias, as in this case, where effectively a permit biased PEP is assumed.)
This behavior could also potentially be used by attackers if they have the ability for instance to interfere with attribute provisioning.

Here is another example: Assume that the initial policy and evaluation is as in the first figure. This time the evaluation of the trusted admin policy is disturbed.

[image: image3.emf]PolicySet

DenyOverrides Algorithm

Evalutes to Permit

Trusted Access Policy

Evaluates to Permit

Trusted Admin Policy

Indeterminate

Non-Trusted Access Policy

Evalutes to Deny

Reduction no longer supports the access policy.

The access policy is dropped.

Some disturbance makes the

admin policy indeterminate.


Again, according to draft 16 the non-trusted access policy will be dropped and the policy set becomes a Permit. The concerns are the same in this case as in the previous case.

In order to avoid these problems, we cannot just drop policies because of indeterminate results. But, we also cannot allow indeterminate results from untrusted policies to affect the result without any verification, since this would open up for an attack, where the attacker simply inserts some broken policies which cause everything to become indeterminate. The solution is to reduce indeterminate results.
The proposed solution

I will illustrate the solution using graphs. First, consider the following policy set:
[image: image4.emf]PolicySet

TrAdPol 1 TrAdPol 2 AdPol 3 AdPol 4 AccPol 1 AccPol 2 AccPol 3


This policy set contains a number of access and administrative policies. When we perform reduction, we can illustrate the reduction with a graph such as this:
[image: image5.emf]TrAdPol 1

TrAdPol 2

AdPol 3

AdPol 4

AccPol 1

AccPol 3


For now, consider a case where the access policy 2 was not applicable, so it is not reduced and access policies 1 and 3 both evaluated to permit and are reduced. An arrow indicates a support relation during reduction in the form of an administrative request which evaluated to permit. In this case the there is a path to the trusted admin policy 2, so access policy 1 is authorized.
So far this is the same as in the current draft. The example is only for illustrating the graph format.
The algorithm for reduction now becomes like this:
1. Evaluate all access policies

2. Reduce all permit access policies only following paths where administrative requests evaluate to permit. The policies which reduce in this fashion are valid permit access policies.

3. Reduce all permit access policies also following paths where administrative requests evaluate to indeterminate. Any policies which reduce to a trusted policy in this manner, and which did not reduce in the previous step are treated as trusted indeterminate policies.

4. Repeat steps 2 and 3 for access policies which evaluated to deny.
5. Reduce all indeterminate access policies following paths with indeterminate administrative requests and with a Permit decision in the situation in the administrative requests. A policy which reduces in this manner is a trusted indeterminate.
6. Repeat step 5 with a Deny in the situation.

During reduction of indeterminate results, administrative requests are generated as usually: take the issuer from the policy and the situation from the original access request to form the administrative request. (This can be done even if a policy has evaluated to indeterminate.)
The motivation of the algorithm is as follows:
In step 2 we do the reduction as it is done today. If there is a valid reduction path, then the policy is trusted. Nothing strange here.

In step 3 we also allow indeterminate administrative policies to support the policy. The reason is that we do not want to drop an indeterminate administrative policy. Rather, if there is “support” from an indeterminate administrative policy, then this indeterminate should be propagated to the combining algorithm so it is not lost. The fact that we have to trace back a path to a trusted policy prevents the attack where an attacker inserts a broken policy which would affect the result. Since such a policy would not be traced back to a trusted policy it would not influence the result.
Step 4 is the same as steps 2 and 3, but for deny results. We have to run these separate steps since the situation in the administrative requests are different in the form of Permit vs Deny.
In steps 5 and 6 we want to see whether the indeterminate access policy is potentially supported. If it is, we want to include the indeterminate in the combination. If there is no path to a trusted policy, we drop the policy since we do not want attackers be able to insert broken policies which affect the result. We do the reduction for both permit and deny to see whether the policy would be potentially supported for either one. If there is potential support for either a permit or a deny, then we treat the policy as a trusted indeterminate.
Here are some illustrations:
[image: image6.emf]TrAdPol 1

TrAdPol 2

AdPol 3

AdPol 4

AccPol 1

AccPol 3


The dotted line denotes an administrative request which evaluated to indeterminate. In this case access policy 3 is trusted and access policy 1 becomes indeterminate.
[image: image7.emf]TrAdPol 1

TrAdPol 2

AdPol 3

AdPol 4

AccPol 1

Indet

AccPol 3


In this case the indeterminate access policy 1 does not affect the combining since it has no support.

[image: image8.emf]TrAdPol 1

TrAdPol 2

AdPol 3

AdPol 4

AccPol 1

Indet

AccPol 3


In this case the indeterminate access policy 1 will affect the result since it was reduced (either as a deny or a permit, it is unspecified in the figure) to a trusted policy.

[image: image9.emf]TrAdPol 1

TrAdPol 2

AdPol 3

AdPol 4

AccPol 1

Indet

AccPol 3


In this case there is no applicable policy. The indeterminate administrative request on policy 4 does not affect the combining since policy 4 could not be reduced.

Notes on the solution

Efficiency

The given algorithm is not the most efficient way to actually implement this, just a specification. (For instance, there is overlap in the requests that are run in steps 2-4 and 5-6.) An implementation may naturally be smart about this as long as the result is the same.
A potential DOS attack
There is also a potential problem with the complexity of this algorithm. Each of the policies in the graphs could potentially be a policy set with delegation inside them. The algorithm requires that the policies in the graph are evaluated several times during the steps 2-6. If delegation is done inside a nested policy set, the evaluation of the policies in the nested policy set means doing multiple evaluations. This gives a multiplicative effect which means that the processing time increases exponentially with the level of nested policies in the worst case.
This complexity problem could be exploited by an attacker. If he inserts a nasty nested policy set, processing overhead could lead to denial of service.

There is a simple solution to this attack. Do the reduction using forward chaining instead of backward chaining. In this way we would not evaluate any nested policy sets unless they have support from a trusted policy. It would still be possible for a trusted issuer to write a policy which requires lots of processing, but untrusted issuers cannot do so. An implementation can also monitor policy evaluation and alert if some policies are extremely time-consuming to further reduce the risks of denial of service.
Delegation depth with forward chaining

The current draft has the delegation depth as an attribute in the administrative request. This means that forward chaining will not work. However, there are issues with the delegation depth as it is, so we need to change the delegation depth implementation to something else anyway. We should use something which allows forward chaining.
An important security consideration
If administrative policies have severe errors in them, in particular trusted administrative policies, they could “potentially support” almost anything, leading to the possibility that indeterminate results propagate to the final result. In my opinion this is a feature rather than a bug, since it is good that errors are detected, but it could also be exploited for denial of service attacks.
Notes on Olav’s formal model
When Olav has been doing his work on XACML, he has been using a formal model which he has developed. Here is a brief note on his model. It explains a lot of the thinking behind the solution (and also how he found the issues with the old combining algorithms).

Basically, Olav defines the indeterminate result to mean that “the policy could potentially be anything”. We can write this as a set {P,D,NA} (for Permit, Deny and Not Applicable).
A combining algorithm is a function which takes a number of decisions as its input and outputs a single decision: f(A,B,C,...) -> P/D/NA/I
A “sound” (lacking any better word) combining algorithm is one which does not reduce uncertainty in the result in the following sense: if there is an indeterminate input to the algorithm, the combining algorithm must return indeterminate if there results would be different if the indeterminate result would be treated as a certain Permit, Deny and Not Applicable respectively.
For instance, consider the deny overrides algorithm. If the case is f(deny, indet), we can return deny since the results of f(deny, permit), f(deny, deny) and f(deny, n/a) all are deny. In contrast if we have f(permit, indet), then we have that f(permit, permit) leads to permit, f(permit, deny) leads to deny, and f(permit, n/a) leads to permit. Note that in this case there is no unique result. The indeterminate input causes uncertainty about the result, and we should return indeterminate. The 2.0 algorithms do not satisfy this condition, which is the reason we can create the strange effects I posted about earlier.

The same line of thinking can be applied to reduction of indeterminate. If we have an indeterminate access policy, it means that the access policy could potentially be P, D or N/A. If it reduces either as a permit or a deny, then we have potential support for the policy. If we would just drop it, we would do an unwarranted reduction in uncertainty by assigning the policy to be not applicable. This is the reason for the bad effect in the problem statement in the beginning of this document.
Similarly, if an administrative policy evaluates to indeterminate, and we just drop it, we are again reducing uncertainty unwarrantedly.


















