Combining algorithms (normative)

This section contains a description of the rule- and policy-combining algorithms specified by XACML. Pseudo code is normative, descriptions in English are non-normative.

Deny-overrides

The following specification defines the “Deny-overrides” rule-combining algorithm of a policy.

The following is a non-normative informative description of this combining algorithm.

The deny overrides rule combining algorithm is intended for those cases where a deny decision should have priority over a permit decision. This algorithm has the following behavior.

1. If any rule evaluates to "Deny", the result is "Deny".

2. Otherwise, if any rule having Effect="Deny" evaluates to "Indeterminate", the result is "Indeterminate".

3. Otherwise, if any rule evaluates to "Permit", the result is "Permit".

4. Otherwise, if any rule having Effect="Permit" evaluates to "Indeterminate", the result is "Indeterminate".

5. Otherwise, the result is "NotApplicable".

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm.

Decision denyOverridesRuleCombiningAlgorithm(Rule rule[])

{

Boolean atLeastOneError = false;

Boolean potentialDeny = false;

Boolean atLeastOnePermit = false;

for(i=0 ; i < lengthOf(rules) ; i++)

{

Decision decision = evaluate(rule[i]);

if (decision == Deny)

{

return Deny;

}

if (decision == Permit)

{

atLeastOnePermit = true;

continue;

}

if (decision == NotApplicable)

{

continue;

}

if (decision == Indeterminate)

{

atLeastOneError = true;

if (effect(rule[i]) == Deny)

{

potentialDeny = true;

}

continue;

}

}

if (potentialDeny)

{

return Indeterminate;

}

if (atLeastOnePermit)

{

return Permit;

}

if (atLeastOneError)

{

return Indeterminate;

}

return NotApplicable;

}

The following specification defines the “Deny-overrides” policy-combining algorithm of a policy set.

The following is a non-normative informative description of this combining algorithm.

The deny overrides policy combining algorithm is intended for those cases where a deny decision should have priority over a permit decision. This algorithm has the following behavior.

1. If any policy evaluates to "Deny", the result is "Deny".

2. Otherwise, if any policy evaluates to "Indeterminate", the result is "Indeterminate".

3. Otherwise, if any policy evaluates to "Permit", the result is "Permit".

4. Otherwise, the result is "NotApplicable".

The following pseudo-code represents the evaluation strategy of this policy-combining algorithm.

Decision denyOverridesPolicyCombiningAlgorithm(Policy policy[])

{

Boolean atLeastOnePermit = false;

Boolean atLeastOneError = false;

for(i=0 ; i < lengthOf(policy) ; i++)

{

Decision decision = evaluate(policy[i]);

if (decision == Deny)

{

return Deny;

}

if (decision == Permit)

{

atLeastOnePermit = true;

continue;

}

if (decision == NotApplicable)

{

continue;

}

if (decision == Indeterminate)

{

atLeastOneError = true;

continue;

}

}

if (atLeastOneError)

{

return Indeterminate;

}

if (atLeastOnePermit)

{

return Permit;

}

return NotApplicable;

}

Obligations of the individual policies shall be combined as described in Section 7.16.

Ordered-deny-overrides

The following specification defines the "Ordered-deny-overrides” rule-combining algorithm of a policy.

The behavior of this algorithm is identical to that of the Deny-overrides rule-combining algorithm with one exception. The order in which the collection of rules is evaluated SHALL match the order as listed in the policy.

The following specification defines the "Ordered-deny-overrides" policy-combining algorithm of a policy set.

The behavior of this algorithm is identical to that of the Deny-overrides policy-combining algorithm with one exception. The order in which the collection of policies is evaluated SHALL match the order as listed in the policy set.

Permit-overrides

The following specification defines the “Permit-overrides” rule-combining algorithm of a policy.

The following is a non-normative informative description of this combining algorithm.

The permit overrides rule combining algorithm is intended for those cases where a permit decision should have priority over a deny decision. This algorithm has the following behavior.

1. If any rule evaluates to "Permit", the result is "Permit".

2. Otherwise, if any rule having Effect="Permit" evaluates to "Indeterminate", the result is "Indeterminate".

3. Otherwise, if any rule evaluates to "Deny", the result is "Deny".

4. Otherwise, if any rule having Effect="Deny" evaluates to "Indeterminate", the result is "Indeterminate".

5. Otherwise, the result is "NotApplicable".

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm.

Decision permitOverridesRuleCombiningAlgorithm(Rule rule[])

{

Boolean atLeastOneError = false;

Boolean potentialPermit = false;

Boolean atLeastOneDeny = false;

for(i=0 ; i < lengthOf(rule) ; i++)

{

Decision decision = evaluate(rule[i]);

if (decision == Deny)

{

atLeastOneDeny = true;

continue;

}

if (decision == Permit)

{

return Permit;

}

if (decision == NotApplicable)

{

continue;

}

if (decision == Indeterminate)

{

atLeastOneError = true;

if (effect(rule[i]) == Permit)

{

potentialPermit = true;

}

continue;

}

}

if (potentialPermit)

{

return Indeterminate;

}

if (atLeastOneDeny)

{

return Deny;

}

if (atLeastOneError)

{

return Indeterminate;

}

return NotApplicable;

}

The following specification defines the “Permit-overrides” policy-combining algorithm of a policy set.

The following is a non-normative informative description of this combining algorithm.

The permit overrides policy combining algorithm is intended for those cases where a permit decision should have priority over a deny decision. This algorithm has the following behavior.

1. If any policy evaluates to "Permit", the result is "Permit".

2. Otherwise, if any policy evaluates to "Indeterminate", the result is "Indeterminate".

3. Otherwise, if any policy evaluates to "Deny", the result is "Deny".

4.
5. Otherwise, the result is "NotApplicable".

The following pseudo-code represents the evaluation strategy of this policy-combining algorithm.

Decision permitOverridesPolicyCombiningAlgorithm(Policy policy[])

{

Boolean atLeastOneError = false;

Boolean atLeastOneDeny = false;

for(i=0 ; i < lengthOf(policy) ; i++)

{

Decision decision = evaluate(policy[i]);

if (decision == Deny)

{

atLeastOneDeny = true;

continue;

}

if (decision == Permit)

{

return Permit;

}

if (decision == NotApplicable)

{

continue;

}

if (decision == Indeterminate)

{

atLeastOneError = true;

continue;

}

}

if (atLeastOneError)

{

return Indeterminate;

}

if (atLeastOneDeny)

{

return Deny;

}

return NotApplicable;

}

Obligations of the individual policies shall be combined as described in Section 7.16.

Ordered-permit-overrides

The following specification defines the "Ordered-permit-overrides" rule-combining algorithm of a policy.

The behavior of this algorithm is identical to that of the Permit-overrides rule-combining algorithm with one exception. The order in which the collection of rules is evaluated SHALL match the order as listed in the policy.

The following specification defines the "Ordered-permit-overrides" policy-combining algorithm of a policy set.

The behavior of this algorithm is identical to that of the Permit-overrides policy-combining algorithm with one exception. The order in which the collection of policies is evaluated SHALL match the order as listed in the policy set.

First-applicable

The following specification defines the "First-Applicable " rule-combining algorithm of a policy.

Each rule SHALL be evaluated in the order in which it is listed in the policy. For a particular rule, if the target matches and the condition evaluates to "True", then the evaluation of the policy SHALL halt and the corresponding effect of the rule SHALL be the result of the evaluation of the policy (i.e. "Permit" or "Deny"). For a particular rule selected in the evaluation, if the target evaluates to "False" or the condition evaluates to "False", then the next rule in the order SHALL be evaluated. If no further rule in the order exists, then the policy SHALL evaluate to "NotApplicable".

If an error occurs while evaluating the target or condition of a rule, then the evaluation SHALL halt, and the policy shall evaluate to "Indeterminate", with the appropriate error status.

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm.

Decision firstApplicableEffectRuleCombiningAlgorithm(Rule rule[])

{

for(i = 0 ; i < lengthOf(rule) ; i++)

{

Decision decision = evaluate(rule[i]);

if (decision == Deny)

{

return Deny;

}

if (decision == Permit)

{

return Permit;

}

if (decision == NotApplicable)

{

continue;

}

if (decision == Indeterminate)

{

return Indeterminate;

}

}

return NotApplicable;

}

The following specification defines the “First-applicable” policy-combining algorithm of a policy set.

Each policy is evaluated in the order that it appears in the policy set. For a particular policy, if the target evaluates to "True" and the policy evaluates to a determinate value of "Permit" or "Deny", then the evaluation SHALL halt and the policy set SHALL evaluate to the effect value of that policy. For a particular policy, if the target evaluate to "False", or the policy evaluates to "NotApplicable", then the next policy in the order SHALL be evaluated. If no further policy exists in the order, then the policy set SHALL evaluate to "NotApplicable".

If an error were to occur when evaluating the target, or when evaluating a specific policy, the reference to the policy is considered invalid, or the policy itself evaluates to "Indeterminate", then the evaluation of the policy-combining algorithm shall halt, and the policy set shall evaluate to "Indeterminate" with an appropriate error status.

The following pseudo-code represents the evaluation strategy of this policy-combination algorithm.

Decision firstApplicableEffectPolicyCombiningAlgorithm(Policy policy[])

{

 for(i = 0 ; i < lengthOf(policy) ; i++)

 {

 Decision decision = evaluate(policy[i]);

 if(decision == Deny)

 {

 return Deny;

 }

 if(decision == Permit)

 {

 return Permit;

 }

 if (decision == NotApplicable)

 {

 continue;

 }

 if (decision == Indeterminate)

 {

 return Indeterminate;

 }

 }

 return NotApplicable;

}

Obligations of the individual policies shall be combined as described in Section 7.16.

Only-one-applicable

The following specification defines the “Only-one-applicable" policy-combining algorithm of a policy set.

In the entire set of policies in the policy set, if no policy is considered applicable by virtue of its target, then the result of the policy-combination algorithm SHALL be "NotApplicable". If more than one policy is considered applicable by virtue of its target, then the result of the policy-combination algorithm SHALL be "Indeterminate".

If only one policy is considered applicable by evaluation of its target, then the result of the policy-combining algorithm SHALL be the result of evaluating the policy.

If an error occurs while evaluating the target of a policy, or a reference to a policy is considered invalid or the policy evaluation results in "Indeterminate, then the policy set SHALL evaluate to "Indeterminate", with the appropriate error status.

The following pseudo-code represents the evaluation strategy of this policy-combining algorithm.

Decision onlyOneApplicablePolicyPolicyCombiningAlogrithm(Policy policy[])

{

 Boolean atLeastOne = false;

 Policy selectedPolicy = null;

 ApplicableResult appResult;

 for (i = 0; i < lengthOf(policy) ; i++)

 {

 appResult = isApplicable(policy[I]);

 if (appResult == Indeterminate)

 {

 return Indeterminate;

 }

 if(appResult == Applicable)

 {

 if (atLeastOne)

 {

 return Indeterminate;

 }

 else

 {

 atLeastOne = true;

 selectedPolicy = policy[i];

 }

 }

 if (appResult == NotApplicable)

 {

 continue;

 }

 }

 if (atLeastOne)

 {

 return evaluate(selectedPolicy);

 }

 else

 {

 return NotApplicable;

 }

}

Biased-deny-overrides

The following specification defines the “Biased-deny-overrides” rule-combining algorithm of a policy.

The following is a non-normative informative description of this combining algorithm.

The biased deny overrides rule combining algorithm is intended for those cases where a deny decision should have priority over both a permit decision and an indeterminate. This algorithm has the following behavior.

1. If any rule evaluates to "Deny", the result is "Deny".

2. Otherwise, if any rule evaluates to "Indeterminate", the result is "Deny".

3. Otherwise, if any rule evaluates to "Permit", the result is "Permit".

4. Otherwise, the result is "NotApplicable".

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm.

Decision biasedDenyOverridesRuleCombiningAlgorithm(Rule rule[])

{

Boolean atLeastOnePermit = false;

for(i=0 ; i < lengthOf(rules) ; i++)

{

Decision decision = evaluate(rule[i]);

if (decision == Deny)

{

return Deny;

}

if (decision == Permit)

{

atLeastOnePermit = true;

continue;

}

if (decision == NotApplicable)

{

continue;

}

if (decision == Indeterminate)

{

return Deny;

}

}

if (atLeastOnePermit)

{

return Permit;

}

return NotApplicable;

}

The following specification defines the “Biased-deny-overrides” policy-combining algorithm of a policy set.

The following is a non-normative informative description of this combining algorithm.

The biased deny overrides policy combining algorithm is intended for those cases where a deny decision should have priority over both a permit decision and Indeterminate. This algorithm has the following behavior.

1. If any policy evaluates to "Deny", the result is "Deny".

2. Otherwise, if any policy evaluates to "Indeterminate", the result is "Deny".

3. Otherwise, if any policy evaluates to "Permit", the result is "Permit".

4. Otherwise, the result is "NotApplicable".

The following pseudo-code represents the evaluation strategy of this policy-combining algorithm.

Decision biasedDenyOverridesPolicyCombiningAlgorithm(Policy policy[])

{

Boolean atLeastOnePermit = false;

for(i=0 ; i < lengthOf(policy) ; i++)

{

Decision decision = evaluate(policy[i]);

if (decision == Deny)

{

return Deny;

}

if (decision == Permit)

{

atLeastOnePermit = true;

continue;

}

if (decision == NotApplicable)

{

continue;

}

if (decision == Indeterminate)

{

return Deny;

}

}

if (atLeastOnePermit)

{

return Permit;

}

return NotApplicable;

}

Obligations of the individual policies shall be combined as described in Section 7.16.

Ordered-biased-deny-overrides

The following specification defines the “Ordered-biased-deny-overrides” rule-combining algorithm of a policy.

The behavior of this algorithm is identical to that of the Biased-deny-overrides rule-combining algorithm with one exception. The order in which the collection of rules is evaluated SHALL match the order as listed in the policy.

The following specification defines the "Ordered-biased-deny-overrides" policy-combining algorithm of a policy set.

The behavior of this algorithm is identical to that of the Biased-deny-overrides policy-combining algorithm with one exception. The order in which the collection of policies is evaluated SHALL match the order as listed in the policy set.

Biased-permit-overrides

The following specification defines the “Biased-permit-overrides” rule-combining algorithm of a policy.

The following is a non-normative informative description of this combining algorithm.

The biased permit overrides rule combining algorithm is intended for those cases where a permit decision should have priority over both a deny decision and indeterminate. This algorithm has the following behavior.

1. If any rule evaluates to "Permit", the result is "Permit".

2. Otherwise, if any rule evaluates to "Indeterminate", the result is "Permit".

3. Otherwise, if any rule evaluates to "Deny", the result is "Deny".

4. Otherwise, the result is "NotApplicable".

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm.

Decision biasedPermitOverridesRuleCombiningAlgorithm(Rule rule[])

{

Boolean atLeastOneDeny = false;

for(i=0 ; i < lengthOf(rule) ; i++)

{

Decision decision = evaluate(rule[i]);

if (decision == Deny)

{

atLeastOneDeny = true;

continue;

}

if (decision == Permit)

{

return Permit;

}

if (decision == NotApplicable)

{

continue;

}

if (decision == Indeterminate)

{

return Permit;

}

}

if (atLeastOneDeny)

{

return Deny;

}

return NotApplicable;

}

The following specification defines the “Biased-permit-overrides” policy-combining algorithm of a policy set.

The following is a non-normative informative description of this combining algorithm.

The biased permit overrides policy combining algorithm is intended for those cases where a permit decision should have priority over both a deny decision and indeterminate. This algorithm has the following behavior.

1. If any policy evaluates to "Permit", the result is "Permit".

2. Otherwise, if any policy evaluates to "Indeterminate", the result is "Permit".

3. Otherwise, if any policy evaluates to "Deny", the result is "Deny".

4. Otherwise, the result is "NotApplicable".

The following pseudo-code represents the evaluation strategy of this policy-combining algorithm.

Decision permitOverridesPolicyCombiningAlgorithm(Policy policy[])

{

Boolean atLeastOneDeny = false;

for(i=0 ; i < lengthOf(policy) ; i++)

{

Decision decision = evaluate(policy[i]);

if (decision == Deny)

{

atLeastOneDeny = true;

continue;

}

if (decision == Permit)

{

return Permit;

}

if (decision == NotApplicable)

{

continue;

}

if (decision == Indeterminate)

{

return Permit;

}

}

if (atLeastOneDeny)

{

return Deny;

}

return NotApplicable;

}

Obligations of the individual policies shall be combined as described in Section 7.16.

Ordered-biased-permit-overrides

The following specification defines the "Ordered-biased-permit-overrides" rule-combining algorithm of a policy.

The behavior of this algorithm is identical to that of the Biased-permit-overrides rule-combining algorithm with one exception. The order in which the collection of rules is evaluated SHALL match the order as listed in the policy.

The following specification defines the "Ordered-biased-permit-overrides" policy-combining algorithm of a policy set.

The behavior of this algorithm is identical to that of the Biased-permit-overrides policy-combining algorithm with one exception. The order in which the collection of policies is evaluated SHALL match the order as listed in the policy set.

