
[image: image1.png]OASIS

XML Common Biometric Format

Working Draft 01, Monday 11 November 2002

Document identifier:

{Working Draft}-{XML Common Biometric Format}-{XCBF}-{01} (PDF, Word)

Location:

http://www.oasis-open.org/committees/xcbf
Editor:

Phillip H. Griffin, Griffin Consulting <phil.griffin@asn-1.com>

Contributors:

Tyky Aichelen, IBM

Ed Day, Objective Systems

Dr. Paul Gérôme, AULM

Phillip H. Griffin (chair), Griffin Consulting

John Larmouth, Larmouth T&PDS Ltd

Monica Martin, Drake Certivo

Bancroft Scott, OSS Nokalva

Paul Thorpe, OSS Nokalva

Alessandro Triglia, OSS Nokalva

Abstract:

Biometrics are measurable physical characteristics or personal behavioral traits that can be used to recognize the identity of an individual, or to verify a claimed identity. This specification defines a common set of secure XML encodings for the patron formats specified in CBEFF, the Common Biometric Exchange File Format (NISTIR 6529). These XML encodings are based on the ASN.1 schema defined in ANS X9.84:2002 Biometrics Information Management and Security. They conform to the canonical variant of the XML Encoding Rules (XER) for ASN.1 defined in ITU-T Rec. X.693, and will rely on the security and processing requirements specified in X9.96 XML Cryptographic Message Syntax (XCMS).

Status:

If you are on the xcbf@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to the xcbf-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to xcbf-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright © 2002 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

41
Introduction

52
Terminology

63
Glossary

74
X9.84 and BioAPI 1.1 Interoperability

74.1 BiometricSyntax

74.1.1 BiometricObjects

84.1.2 IntegrityObjects

84.1.3 PrivacyObjects

154.1.4 PrivacyAndIntegrityObjects

165
References

165.1 Normative

176
XCBF Schema

176.1 X9-84-Biometrics Module

176.2 X9-84-CMS Module

176.3 X9-84-Identifiers Module

187
Examples

187.1 BiometricSyntaxSets (cXER, DER)

19Appendix A. Acknowledgments

20Appendix B. Revision History

21Appendix C. Notices

Introduction

…

1 Terminology

…

2 Glossary

…

3 X9.84 and BioAPI 1.1 Interoperability

…

3.1 BiometricSyntax

…

3.1.1 BiometricObjects

…

3.1.1.1 BiometricHeader

…

3.1.1.1.1 BiometricVersion

…

3.1.1.1.2 RecordType

…

3.1.1.1.3 DataType

…

3.1.1.1.4 Purpose

…

3.1.1.1.5 Quality

…

3.1.1.1.6 ValidityPeriod

…

3.1.1.1.7 Format

…

3.1.1.1.7.1 CBEFF-Formats

…

3.1.1.1.7.2 IBIA-Formats

…

3.1.1.1.7.3 X9-Formats

…

3.1.1.2 BiometricData

…

3.1.2 IntegrityObjects

…

3.1.2.1 DigitalSignature

…

3.1.2.1.1 Digital Signature Process

…

3.1.2.2 MessageAuthenticationCode

…

3.1.2.2.1 Message Authentication Process

3.1.2.3 SignedData

…

3.1.2.3.1 Message digest and signature process

…

3.1.2.4 AuthenticatedData

…

3.1.3 PrivacyObjects

The privacy objects provided by XCBF are based on a value of type PrivacyObjects, which is defined as a sequence of two components, biometricHeaders and privacyBlock.

PrivacyObjects ::= SEQUENCE {

 biometricHeaders BiometricHeaders OPTIONAL,

 privacyBlock PrivacyBlock

}

The biometricHeaders component is a series of one or more values of type BiometricHeader.

BiometricHeaders ::= SEQUENCE SIZE(1..MAX) OF BiometricHeader

This optional PrivacyObjects component is not protected by encryption and should be present only when a privacy object is used in a secure environment, or when the information contained in the biometricHeaders component does not compromise security or assist an attacker. In a secure setting these biometric headers may be used as a convenience, to assist in searches of biometric information and in database management operations.

The encrypted content in the privacy block contains a series of one or more values of type BiometricObject, including their biometric headers. To be useful, the biometricHeaders component need only provide an indication of the information contained in the encrypted privacy block. But this component need not contain exactly the same information as the headers in the encrypted privacy block, and may contain only a single BiometricHeader value when present.

The privacyBlock component of type PrivacyObjects offers three choice alternatives, fixedKey, namedKey and establishedKey.

PrivacyBlock ::= CHOICE {

 fixedKey EncryptedData,

 namedKey NamedKeyEncryptedData,

 establishedKey EnvelopedData

}

The fixedKey and namedKey choice alternatives are based on the EncryptedData type. The establishedKey alternative is based on type EnvelopedData. Each of these alternatives has different characteristics, and the alternative chosen will depend upon application requirements and the key management scheme being used.

3.1.3.1 Encrypted Content Information

All three of the privacy block choice alternatives contain a value of type EncryptedContentInfo defined as

EncryptedContentInfo ::= SEQUENCE {

 contentType ContentType,

 contentEncryptionAlgorithm ContentEncryptAlgorithmIdentifier,

 encryptedContent [0] EncryptedContent

}

The contentType component identifies the type of encrypted content. In XCBF, the type of encrypted content is always a value of EncodedBiometricObjects, a series of one or more values of type BiometricObject encoded using the XML Encoding Rules. The type of encrypted content is identified as ordinary data by the information object identifier value id-data. This value is defined as

<contentType> 1.2.840.113549.1.7.1 </contentType>

The contentEncryptionAlgorithm component identifies the content encryption algorithm and any associated parameters used to encrypt and decrypt the EncodedBiometricObjects. This content encryption algorithm is a value of type ContentEncryptionAlgorithmIdentifier defined as

ContentEncryptAlgorithmIdentifier ::=

 AlgorithmIdentifier {{ContentEncryptionAlgorithms}}

The definition of type ContentEncryptionAlgorithmIdentifier is based on the parameterized type AlgorithmIdentifier {} and the information object set ContentEncryptionAlgorithms, defined as

ContentEncryptionAlgorithms ALGORITHM ::= {

 { OID des-ede3-cbc PARMS IV },

 ... -- Expect other content encryption algorithms --

}

IV ::= OCTET STRING (SIZE(8))

ContentEncryptionAlgorithms specifies an extensible set of ALGORITHM information objects. The fields of these information objects are used to constrain the valid values of the components of type ContentEncryptionAlgorithmIdentifier. Though only one content encryption algorithm object is defined explicitly in this set, implementations should expect additional algorithms.

The ContentEncryptionAlgorithms information object set contains a single object that identifies the encryption algorithm described in ANS X9.52 [X9TDEA] as Triple DES in CBC (cipher block chaining) mode. Only the two key and three key variants of Triple DES are supported in XCBF. The single key variant of Triple DES is simply the DES algorithm and is generally used only for backwards compatibility with existing DES based applications and is considered vulnerable to attack.

The Triple DES algorithm consists of three sequential DES operations, encrypt, decrypt, and encrypt. For three key Triple DES a different key is used for each DES operation. For two key Triple DES one key is used for both DES encrypt operations, and the second key is used for the DES decrypt operation.

The encryptedContent component contains a value of type EncodedBiometricObjects encrypted using the content encryption algorithm given in the contentEncryptionAlgorithm component. A value of encryptedContent is an opaque string of octets treated as having no discernable structure. This string is a value of type EncryptedContent defined as

EncryptedContent ::= OCTET STRING

3.1.3.2 Fixed Key EncryptedData

The fixedKey choice alternative of the privacyBlock component of type PrivacyObjects is a value of type EncryptedData. This type is a sequence of two components, an integer version number and a value of type EncryptedContentInfo. Type EncryptedData is defined as

EncryptedData ::= SEQUENCE {

 version CMSVersion,

 encryptedContentInfo EncryptedContentInfo

}

The fixedKey alternative assumes that the recipient of the EncryptedData value knows the key used to encrypt the biometric information, perhaps by prior agreement or as the result of a key exchange. The version component of type EncryptedData is always the integer value eighty-four. The components of type EncryptedContentInfo are described in section 4.1.3.1 Encrypted Content Information.

3.1.3.2.1 Encryption Process

A value of type EncryptedData is created by encrypting a series of one or more values of type BiometricObject in their encoded form using a content encryption algorithm and a fixed content encryption key known to the sender and recipient. The content to be encrypted is a value of type EncodedBiometricObjects.This value is always encoded using the XML Encoding Rules. The content encryption algorithm used to encrypt the biometric objects is one of the algorithms specified in the information object set ContentEncryptionAlgorithms.

The contentType component of type EncryptedContentInfo is set to indicate ordinary data. The associated contentEncryptionAlgorithm value is set to identify the algorithm used to encrypt the content, and the encryptedContent value is set to the results of encrypting the content using this content encryption algorithm.

3.1.3.2.2 Decryption Process

To decrypt a value of type EncryptedData, the content encryption algorithm specified in the contentEncryptionAlgorithm component of type EncryptedContentInfo is applied to the associated encryptedContent component using a known fixed key to recover a value of type EncodedBiometricObjects.This recovered value will contain one or more values of type BiometricObject encoded using the XML Encoding Rules.

3.1.3.3 Named Key EncryptedData

The namedKey choice alternative of the privacyBlock component of type PrivacyObjects is a value of type NamedKeyEncryptedData. This type is sequence with two components, keyName and encryptedData. Type NamedKeyEncryptedData is defined as

NamedKeyEncryptedData ::= SEQUENCE {

 keyName OCTET STRING (SIZE(1..MAX)),

 encryptedData EncryptedData

}

The keyName component explicitly identifies the key used to encrypt and decrypt the content by name. The encryptedData component is a value of type EncryptedData. This type contains two components, an integer version number that is always eighty-four in this standard, and an encryptedContentInfo that is a value of type EncryptedContentInfo as described in section 4.1.3.1 Encrypted Content Information.

3.1.3.3.1 Encryption Process

A value of type EncryptedData is created by encrypting a series of one or more values of type BiometricObject in their encoded form using a content encryption algorithm and a named key that is known to the recipient of the encrypted biometric information. The content to be encrypted is a value of type EncodedBiometricObjects. This value is always encoded using the XML Encoding Rules. The content encryption algorithm used to encrypt the biometric objects is one of the algorithms specified in the information object set ContentEncryptionAlgorithms.

The keyName component of type NamedKeyEncryptedData is set to the name of the content encryption key. The contentType component of type EncryptedContentInfo is set to indicate ordinary data. The associated contentEncryptionAlgorithm value is set to identify the algorithm used to encrypt the content, and the encryptedContent value is set to the results of encrypting the content using this content encryption algorithm.

3.1.3.3.2 Decryption Process

To decrypt a value of type NamedKeyEncryptedData, the content encryption algorithm specified in the contentEncryptionAlgorithm component of type EncryptedContentInfo is applied to the associated encryptedContent component using the key identified by the keyName component of type NamedKeyEncryptedData to recover a value of type EncodedBiometricObjects. This recovered value will contain one or more values of type BiometricObject encoded using the XML Encoding Rules.

3.1.3.4 Established Key EnvelopedData

The establishedKey choice alternative of the privacyBlock component of type PrivacyObjects is a value of type EnvelopedData. This type is a sequence of four components, an integer version number, originator information, recipient information, and a value of type EncryptedContentInfo. Type EnvelopedData is defined as

EnvelopedData ::= SEQUENCE {

 version CMSVersion,

 originatorInfo [0] OriginatorInfo OPTIONAL,

 recipientInfos RecipientInfos,

 encryptedContentInfo EncryptedContentInfo

}

The combination of encrypted content and an encrypted content encryption key forms a “digital envelope”. The establishedKey alternative uses a randomly generated content encryption key to encrypt digital content. The same key is used to decrypt the content. The content encryption key must be protected during transport, so the recipient’s public and private key pair is used to encrypt and decrypt the content encryption key.

The encrypted content is value of type EncodedBiometricObjects. This type is a series of one or more values of type BiometricObject in their encoded form. In XCBF these values are encoded using the XML Encoding Rules.

The version component of type EnvelopedData is the integer value eighty-four. The optional originatorInfo component facilitates distribution of digital certificates and certificate revocation lists. The recipientInfos component contains information needed to recover the encrypted content encryption key used to encrypt the biometric information. The encryptedContentInfo component is a value of type EncryptedContentInfo. This type is described in section 4.1.3.1 Encrypted Content Information.

3.1.3.4.1 Certificates and CRLs

Type OriginatorInfo is a sequence of two components that may contain sets of digital certificates and certificate revocation lists (CRLs). This type is defined as

OriginatorInfo ::= SEQUENCE {

 certs [0] CertificateSet OPTIONAL,

 crls [1] CertificateRevocationLists OPTIONAL

}

(ALL EXCEPT({ -- none; at least one component is present -- }))

Any combination of X9.68 domain certificates, X.509 certificates and attribute certificates may be included in the CertificateSet type in any order. There may be more or fewer certificates needed for any purpose. Certificates are provided as needed to support content key encryption in the key transport key management technique used in XCBF. Use of the CertificateSet type to distribute certificates is not required. They may be obtained by other means, or an online certificate validation service may be used instead. Only version one X9.68 domain certificates, version three X.509 certificates and version two attribute certificates are supported in this standard.

Any number of CRLs may be included in the CertificateRevocationLists type in any order. There may be more or fewer CRLs needed for any purpose. CRLs are provided as needed to support certificate validation. Use of the CertificateRevocationLists type to distribute CRLs is not required. CRLs may be obtained by other means, or an online certificate validation service may be used instead. Only version two certificate revocation lists are supported in this standard.

The certificates and certificate revocation lists used in XCBF are signed binary objects, whose digital signatures have been calculated on values encoded using the Distinguished Encoding Rules (DER) of ASN.1. In order to verify the signatures on these objects, their original encodings must be maintained. But these values must also be represented in XML encodings in a useful textual format. So the values in the certs and crls components of type OriginatorInfo I have been base64 armored to minimize their size when represented using XML markup while preserving their original encodings.

3.1.3.4.2 Recipient Information

Type RecipientInfos is a series of values of type RecipientInfo, one value for each recipient of a digital envelope in EnvelopedData. In XCBF there is always a single digital envelope recipient, and type RecipientInfos is constrained to a series of one RecipientInfo and defined as

RecipientInfos ::= SET SIZE(1) OF RecipientInfo

Several key management techniques can be used in EnvelopedData. In XCBF, only key transport is supported. Other techniques such as constructive key management may be employed by an application, but such use in not defined in this standard. Type RecipientInfo is restricted to a single choice alternative and defined as

RecipientInfo ::= CHOICE {

 ktri KeyTransRecipientInfo

}

Key transport information is provided to the recipient of a digital envelope so that the envelope can be opened and the protected content encryption key recovered. The content encryption key may then be used to decrypt the content.

The information needed by the recipient to recover the content encryption key is contained in a value of type KeyTransRecipientInfo defined as

KeyTransRecipientInfo ::= SEQUENCE {

 version CMSVersion,

 rid RecipientIdentifier,

 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,

 encryptedKey EncryptedKey

}

This type is a sequence of four components. The integer version number is always set to eighty-four in XCBF. The rid component is used to identify the public key used to encrypt the content encryption key. This public key is bound to a key encryption algoithm in a public key certificate. It is associated with the recipient private key needed to decrypt the content encryption key used by the sender to encrypt the content.

A hash of the public key certificate uniquely identifies the recipient certificate.

RecipientIdentifier ::= CHOICE {

 certHash [73] EXPLICIT Hash

}

The keyEncryptionAlgorithm component identifies the key encryption algorithm and any associated parameters used to encrypt the content encryption key.

KeyEncryptionAlgorithmIdentifier ::=

 AlgorithmIdentifier {{KeyEncryptionAlgorithms}}

KeyEncryptionAlgorithms ALGORITHM ::= {

 { OID rsaEncryption PARMS NoIV },

 ... -- expect other key encryption algorithms --

}

The encrypted content encryption key is an opaque string, a value of type EncryptedKey defined as

EncryptedKey ::= OCTET STRING

3.1.3.4.3 Digital Envelope Processing

To create a digital envelope, a content encryption algorithm is selected. The content encryption algorithm identifier and any associated parameters form the contentEncryptionAlgorithm value of the encryptedContentInfo component of type EnvelopedData. The recipient uses this value to recover the encrypted content.

The content encryption key is encrypted using the key encryption algorithm and public key from the recipient’s public key certificate. The key encryption algorithm identifier and any associated parameters used to encrypt the content encryption key form the keyEncryptionAlgorithm component of type KeyTransRecipientInfo.

The result of encrypting the content encryption key forms the encryptedKey component of type KeyTransRecipientInfo. A hash of the complete DER encoding of the recipient’s public key certificate is used to populate the rid component, and the version component is set to the integer eighty-four.

The content encryption key is used to encrypt a value of type EncodedBiometricObjects. This type is a series of one or more values of type BiometricObject in their encoded form. These values are encoded using the XML Encoding Rules.

To retrieve the encrypted content, the recipient first decrypts the value of the encryptedKey component of type KeyTransRecipientInfo to recover the content encryption key using the private key associated with the public key used to encrypt the content encryption key. This private key is indicated by the hash of the associated public key certificate in the rid component of type KeyTransRecipientInfo. The recovered content encryption key is then used to decrypt the content to recover a value of type EncodedBiometricObjects.

3.1.4 PrivacyAndIntegrityObjects

…

4 References

4.1 Normative

…

5 XCBF Schema

…

5.1 X9-84-Biometrics Module

…

5.2 X9-84-CMS Module

…

5.3 X9-84-Identifiers Module

…

6 Examples

Need some introductory text here

6.1 BiometricSyntaxSets (cXER, DER)

Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this specification:

· Tyky Aichelen, IBM

· Karl Best, OASIS

· Taylor Boon, BioNetrix Systems

· Robin Cover, Isogen

· Ed Day, Objective Systems

· Dr. Paul Gérôme, AULM

· Phillip H. Griffin (chair), Griffin Consulting

· Todd Harbour, FGM

· William Koenig, Bank of America

· John Larmouth, Larmouth T&PDS Ltd

· Monica Martin, Drake Certivo

· Rob Philpott, RSA Security

· Bancroft Scott, OSS Nokalva

· Clifford Thompson, TGI Solutions

· Paul Thorpe, OSS Nokalva

· Alessandro Triglia, OSS Nokalva

Appendix B. Revision History

	Rev
	Date
	By Whom
	What

	wd-01
	2002-08-31
	Phil Griffin
	Initial version

	wd-01
	2002-09-27
	Phil Griffin
	X9.84 schema revision; glossary

	Wd-01
	2002-10-24
	Phil Griffin
	X.509/X9.68 Certificate extensions

	Wd-01
	2002-11-11
	Phil Griffin
	Made various signature processing corrections; added text for privacy objects section.

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights, which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © 2002 OASIS Open, Inc. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

6

{Working Draft}-{XML Common Biometric Format}-{XCBF}-{01}
{Working Draft}-{XML Common Biometric Format}-{XCBF}-{01}
2

