	
	
	

	
	
	

Looking at the genesis of the 2.0 abstract syntax.
XDI is about Resource Identifiers. Identifying a resource is addressing a resource.
By supporting segments and subsegments in the addressing syntax, XRI 2.0 allows “graphs within nodes” – heady stuff!
1. Addressing with segments only – you can address nodes in a graph.

 a/b/c

[image: image1]
2. But by addressing with segments and subsegments, every node in the above graph can itself contain a graph. Wow: graphs within nodes. This is pretty heady
 a*b*c/x*y

[image: image2]

Note that the addressing model is very simple at this point.

3. So, the question becomes…, why complicate things and allow two types of subsegments?
Answer: formalizing a convention for persistent identifiers (using star vs bang subsubsegments) is worth the additional complexity.
[Sounds reasonable to me.]
Example of using the “graphs within nodes”.
Note: Here’s a diagram that attempts to show the how the “graphs within nodes” is used in the (ATI) XDI addressing.

The diagram shows the XRI auhorithy graph (in the first segment) and the (ATI) XDI graph. For example, the following XRI addresses the orange node in the XDI Authority node on the right. The solid (black and green) arrows are represented by the stars between subsegments. The dashed lines are represented by the slashes between segments.
 @example*john/+foo/a*b*c

[image: image3]
[a/b/c]

a*b*c/x*y

a*b*c

[@]

[@example]

*desktop

*laptop

[@example*john*laptop]

XRI Authority Resolution Services

Global

Delegated

XDI Dataweb Servers � (XDI Services)

*example

*john

*fred

(@example*john)

[@example*fred]

[@example*fred*desktop]

(@example*fred)

[@example*john]

 Authority

Type

 Instance

XDI Authority Graphs

 XRI Authority Graph

	
	1

