

JLIFF, Creating a JSON
Serialization of OASIS XLIFF

Filip, Ritchie, & van Engelen

ADAPT Centre, Vistatec, Genivia

XML Prague 2019, 9th February

XLIFF 2 namespaces

Namespaces that appear both in XLIFF 2.1 and XLIFF 2.0
urn:oasis:names:tc:xliff:document:2.0 <!-- Core -->

urn:oasis:names:tc:xliff:matches:2.0 <!-- Translation Candidates Module -->

urn:oasis:names:tc:xliff:glossary:2.0 <!-- Glossary Module -->

urn:oasis:names:tc:xliff:fs:2.0 <!-- Format Style Module -->

urn:oasis:names:tc:xliff:metadata:2.0 <!-- Metadata Module -->

urn:oasis:names:tc:xliff:resourcedata:2.0 <!-- Resource Data Module -->

urn:oasis:names:tc:xliff:sizerestriction:2.0 <!-- Size and Length Restriction Module -->

urn:oasis:names:tc:xliff:validation:2.0 <!-- Validation Module -->

Namespaces that appear only in XLIFF 2.1
http://www.w3.org/2005/11/its <!-- ITS Module -->

urn:oasis:names:tc:xliff:itsm:2.1 <!-- ITS Module -->

Namespaces that appear only in XLIFF 2.0
urn:oasis:names:tc:xliff:changetracking:2.0 <!-- Change Tracking Module -->

http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#core
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#candidates
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#glossary-module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#fs-mod
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#metadata_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#resourceData_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#size_restriction_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#validation_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ITS-module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ITS-module
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#changeTracking_module

LIOM design

LIOM

LIOM – static structure

top root

file
group

group

unit
unit

skeleton
At least 1 of

At most 1

At least 1

Optional but
recursive

leaf

0, 1, or
more of

leaf

LIOM – transient structure

unit

segment

source

target

ignorable

source

target

original data

core and module based
metadata

At least 1
segment of

Exactly 1

Exactly 1

At most 1

At most 1

code and marker spans

LIOM – inline content model

source | target

text

sc

ec

sm

em

ph

Can form spans or be
orphaned within
ancestor unit

Has to form spans
within ancestor unit

At least one of in
“meaningful” order

XLIFF Top Level Element

<xliff xmlns="urn:oasis:names:tc:xliff:document:2.0"

xmlns:uext1="http://example.com/userextension/1.0"

xmlns:uext2="http://example.com/userextension/2.0"

version="2.1" srcLang="en" trgLang="fr">

<file … >

<group … > /arbitrary group depth including 0/

<unit … > [… /truncated payload structure / …]

</unit>

</group>

<file>

</xliff>

JLIFF Anonymous Top Level Object

{

"jliff": "2.1",

"@context": {

"uext1": "http://example.com/userextension/1.0",

"uext2": "http://example.com/userextension/2.0"

},

"srcLang": "en",

"trgLang": "fr",

"files | subfiles | sugbroups | subunits": [… /truncated payload structure / …]

}

JLIFF Design

General design principles

Avoid XMLism, SGMLism

- such as xml:space, escaping XML illegal characters (cp)

- dropped well formed spanning inline markup

Different approach to structure

- elements & attributes vs objects & properties

- everything needs to be in key value pairs, no mixing character data with
markup

- objects are not ordered, so need to use arrays to represent sequences

- JSON is always typed -> modularization harder

- fewer types in JSON -> custom types via patterns

General design principles

Avoid XMLism, SGMLism

- such as xml:space, escaping XML illegal characters (cp)

- dropped well formed spanning inline markup

Different approach to structure

- elements & attributes vs objects & properties

- everything needs to be in key value pairs, no mixing character data with
markup

- objects are not ordered, so need to use arrays to represent sequences

- JSON is always typed -> modularization harder

- fewer types in JSON -> custom types via patterns

No mixing character data with markup
<source>Eat <ph id="1" equiv="[number]"/> eggs for <mrk
id="2">breakfast</mrk>. </source>

{

"source" : [

{"text" : "Eat "} ,

{"kind" : "ph" , "id" : "1", "equiv" : "[number]"} ,

{"text" : " eggs for "} , {"kind" : "sm" , "id" : "2"} ,

{"text" : "breakfast"} ,

{"kind" : "em" , "id" : "3" , "startRef" : "2"} ,

{"text" : ". "}

]

}

xs data types via patterns

NCName

"NCName": {

"description": "XSD NCName type for xml:id

interoperability",

"type": "string",

"pattern": "^[_A-Za-z][-._A-Za-z0-9]*$"

}

XLIFF mapping to JSON
1. JSON object property names are used to represent XLIFF elements and attributes, with the

exception of element sequences that must be represented by JSON arrays;

2. JSON arrays represent element sequences, for example a sequence of <file> elements becomes

an array identified by the JSON object property "files": […] where each array item is an

anonymous file object that contains an array of "subfiles": […]. Plural forms refer to arrays in

JLIFF as a reminder of the structural differences between XML and JSON;

3. To store units and groups that exist within files, JSON object property "subfiles": […] is an

array of unit and group objects representing XLIFF <unit> and <group> elements, where an

anonymous unit object is identified by a "kind": "unit" and an anonymous group object is

identified by "kind": "group";

4. Likewise, "subunits": […] is an array of subunits of a unit object, where a segment subunit is

identified as an object with "kind": "segment" and a ignorable object is identified as "kind":

"ignorable";

5. A subset of XSD data types that are used in XLIFF are also adopted in the JLIFF schema by

defining corresponding JSON schema string types with restricted value spaces defined by

regex patterns for NCName, NMTOKEN, NMTOKENS, etc.

XLIFF mapping to JSON

6. Because JSON intrinsically lacks namespace support, qualified JSON object property names

represent XLIFF modules, which is purely syntactic to enhance JLIFF document readability and

processing. For example, ITS module properties are identified by prefix its_, such

as "its_locQualityIssues". Generally undersore "_" is used as the namespace prefix separator

for modules (unlike custom namespace based extensions);

7. JLIFF extensions are defined by the optional JSON-LD context "@context": {…} as a property

of the anonymous JLIFF root object. [JSON-LD] offers a suitable replacement of XML

namespaces required for extension identification and processing. A JSON-LD context is a

mapping of prefixes to IRIs. A JSON-LD processor resolves the prefix in an object property

name and thus creates a fully qualified name containing the corresponding IRI qualifier;

8. To identify JLIFF documents, the anonymous JLIFF root object has a required property "jliff":

"2.0" or "jliff": "2.1";

9. One of the decisions taken in relation to element mappings was not to explicitly support well-

formed <pc/> and <mrk/> elements, therefore <mrk/> is mapped to <sm/> and pairs,

and <pc/> is mapped to <sc/> and <ec/>pairs. See also LIOM Core.

Other design considerations (1)
While JSON supports the Boolean type values true and false, string based enumerations

of yes and no are used in JLIFF to represent XLIFF attributes of the yesNo type.

Reason 1

Omission of a Boolean value is usually associated with the value false by processors and

applications.

The XLIFF default of the yesNo attributes is yes.

Absence of an attribute typically indicates permission.

Hence we defined the yes defaults in the JLIFF JSON schema, which would have conflicted

with the defaulting behavior of the JSON Boolean type.

Reason 2

The object property canReorder of the ec, ph, and sc objects is a three-valued enumeration

with the yes, no, and firstNo values, necessitating the use of a JSON string type with

enumeration rather than a JSON Boolean type in JLIFF.

Other design considerations (2)

Almost all JSON schema types defined for JLIFF correspond one-to-one with JSON object

property names in JLIFF documents. This design choice reduces efforts to comprehend the

JLIFF JSON schema structure for implementers versed in XLIFF. For example,

the files property mentioned earlier has a corresponding files type in the JLIFF JSON

schema, which is an array that references the file schema type. However, this schema design

deviates in one important aspect that is intended to avoid unnecessary duplication of the

schema types for the properties subfiles and subgroups that share the same data model. It

was decided to introduce the schema type subitems to represent the value space of

both subfiles and subgroups. We also added named types to the schema that have no

corresponding property name, to break out the JSON structure more clearly. For

example, elements is an array of mixed types, which is one of (element-text, element-

ph, element-sc, element-ec, element-sm, and element-em in the schema. Note

that element-text is a string while the other types are objects.

Other design considerations (3)
JLIFF Modules are an integral part of the JLIFF specification, meaning that all Modules are part of the

single JSON schema specification of JLIFF [JLIFFSchema].

This simplifies the processing of Modules by processors, as Modules are frequently used (albeit different

subsets based on individual needs and specializations) by implementers.

Extensions are registered externally and included in JLIFF documents as userdata objects.

A userdata object contains one or more extensions as key-value pairs: each extension is identified by a

qualified property with an extension-specific JSON value. The prefix of the qualified property of an

extension is bound to the IRI of the extension using the JSON-LD @context to identify the unique

extension namespace IRI.

Processors that are required to handle extensions should resolve the prefix to the extension’s objects fully

qualified names as per JSON-LD processing requirements.

Otherwise extensions can be ignored without raising validation failures. This approach offers an

extensible and flexible mechanism for JLIFF extensions.

JSON-LD workaround for namespaces great for extensions,

but heavy weight and too complex for modules that are used regularly.

The "context" of modules is considered a shared JLIFF agent knowledge documented in the prose

specification rather then being resolved each time when module data need processed, hammering OASIS

servers...

XLIFF, LIOM, and JLIFF resources (1)
[ITS20] D. Filip, S. McCance, D. Lewis, C. Lieske, A. Lommel, J. Kosek, F. Sasaki, Y. Savourel,

Eds.: Internationalization Tag Set (ITS) Version 2.0. W3C Recommendation, 29 October 2013.

W3C. http://www.w3.org/TR/its20/

[JGT] P. Ritchie, JLIFF Graph Tools. Vistatec,

2019. https://github.com/vistatec/JliffGraphTools/commit/74ffde990d8dd6d6d5d3f80d78e76ea8b0dc8736

[JLIFF] D. Filip and R. van Engelen, JLIFF Version 1.0 [wd01]. OASIS, 2018. https://github.com/oasis-

tcs/xliff-omos-jliff/commit/7e63e0d766bb7394f9dccaa93d7fa54bf1a394d3

[JLIFFSchema] R. van Engelen, JLIFF Version 1.0, JSON Schema [wd01]. OASIS,

2018. https://github.com/oasis-tcs/xliff-omos-jliff/commit/2ed3b57f38548600f1261995c466499ad0ade224/>

[JSON-LD] M. Sporny, G. Kellogg, M. Lanthaler, Eds. JSON-LD 1.0, A JSON-based Serialization for

Linked Data W3C Recommendation 16 January 2014. https://www.w3.org/TR/2014/REC-json-ld-

20140116//>

[L10nStandards] D. Filip: Localization Standards Reader 4.0 [v4.0.1], Multilingual, vol. 30, no. 1, pp. 59–73,

Jan/Feb-2019. https://magazine.multilingual.com/issue/jan-feb-2019dm/localization-standards-reader-4-0/

[LIOM] D. Filip, XLIFF 2 Object Model Version 1.0 [wd01]. OASIS, 2018. https://github.com/oasis-

tcs/xliff-omos-om/commit/030828c327998e7c305d9be48d7dbe49c8ddf202/>

http://www.w3.org/TR/its20/
https://github.com/vistatec/JliffGraphTools/commit/74ffde990d8dd6d6d5d3f80d78e76ea8b0dc8736
https://github.com/oasis-tcs/xliff-omos-jliff/commit/7e63e0d766bb7394f9dccaa93d7fa54bf1a394d3
https://github.com/oasis-tcs/xliff-omos-jliff/commit/2ed3b57f38548600f1261995c466499ad0ade224
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://magazine.multilingual.com/issue/jan-feb-2019dm/localization-standards-reader-4-0/
https://github.com/oasis-tcs/xliff-omos-om/commit/030828c327998e7c305d9be48d7dbe49c8ddf202

XLIFF, LIOM, and JLIFF resources (2)
[XLIFF20] T. Comerford, D. Filip, R. M. Raya, and Y. Savourel, Eds.: XLIFF Version 2.0. OASIS

Standard, 05 August 2014. OASIS. http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-

os.html

[XLIFF21] D. Filip, T. Comerford, S. Saadatfar, F. Sasaki, and Y. Savourel, Eds.: XLIFF Version 2.1.

OASIS Standard, 13 February 2018. OASIS http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-

v2.1-os.html

[XLIFFEMBP] D. Filip and J. Husarčík, Eds., XLIFF 2 Extraction and Merging Best Practice, Version 1.0.

Globalization and Localization Association (GALA) TAPICC,

2018. https://galaglobal.github.io/TAPICC/T1/WG3/rs01/XLIFF-EM-BP-V1.0-rs01.xhtml/>

[XLIFFglsTBXBasic] J. Hayes, S. E. Wright, D. Filip, A. Melby, and D. Reineke, Interoperability of

XLIFF 2.0 Glossary Module and TBX-Basic, Localisation Focus, vol. 14, no. 1, pp. 43–50, Apr.

2015.https://www.localisation.ie/resources/publications/2015/260

[XLIFFRender] D. Filip and J. Husarčík, Modification and Rendering in Context of a Comprehensive

Standards Based L10n Architecture, Proceedings ASLING Translating and the Computer, vol. 40, pp. 95–

112, Nov. 2018. https://www.asling.org/tc40/wp-content/uploads/TC40-Proceedings.pdf

http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html
https://galaglobal.github.io/TAPICC/T1/WG3/rs01/XLIFF-EM-BP-V1.0-rs01.xhtml
https://www.localisation.ie/resources/publications/2015/260
https://www.asling.org/tc40/wp-content/uploads/TC40-Proceedings.pdf

Thanks a million!

Q & A

@merzbauer

@philinthecloud

@vEngelenRobert

