
XLIFF 2.0:

Great Expectations

Andrew Pimlott <andrew.pimlott@welocalize.com>
Welocalize

Processing

^

Goal

Add alt-trans support to OpenTM2.

Goal

Add alt-trans support to OpenTM2.

<trans-unit id='1' translate="yes">
 <source>Hello world</source>
 <alt-trans match-quality="65">
 <source>hello</source>
 <target>bonjour</target>
 </alt-trans>
</trans-unit>

Goal

Add alt-trans support to OpenTM2.

OR

"alt-trans: Can the Naive Implementor Do It?"

(A nod to Tim Bray and Michael Leventhal for
"XML: Can the Desperate Perl Hacker do it?")

Problem

 <trans-unit id="1" translate="no">
 <source>abc</source>
 </trans-unit>

Problem

 <trans-unit id="1" translate="no">
 <source>abc</source>
 </trans-unit>

• Do I still show them?
• Can the translator override?

Problem

 <trans-unit id="1" translate="yes">
 <source>abc</source>
 <target>def</target> <!-- no state -->
 </trans-unit>

Problem

 <trans-unit id="1" translate="yes">
 <source>abc</source>
 <target>def</target> <!-- no state -->
 </trans-unit>

• How should this segment be presented? Needs translation?
 Already translated?

• Does it matter that the target differs from the source?

Problem

 <trans-unit id="1" translate="yes">
 <source>abc</source>
 <target state="translated">def</target>
 </trans-unit>

Problem

 <trans-unit id="1" translate="yes">
 <source>abc</source>
 <target state="translated">def</target>
 </trans-unit>

• How should this segment be presented? Unmodifiable?
Modifiable with a warning? Skipped by default?

Problem

 <trans-unit id="1" translate="yes">
 <source>abc</source>
 <target state="translated">def</target>
 </trans-unit>

• How should this segment be presented? Unmodifiable?
Modifiable with a warning? Skipped by default?

• What about other states?

Problem

 <alt-trans match-quality="65">
 <source>abc</source>
 <target>def</target>
 </trans-unit>

Problem

 <alt-trans match-quality="65">
 <source>abc</source>
 <target>def</target>
 </trans-unit>

• What is the format of this attribute?
• What do I do with it?

Problem

How do I use an alt-trans?

Problem

How do I use an alt-trans?

• How do I set metadata when using an alt-trans proposal?
o state-qualifier?

Problem

How do I use an alt-trans?

• How do I set metadata when using an alt-trans proposal?
o state-qualifier?

• Do I have to adapt the inline markup? May I? How?

Problem

What does the output XLIFF look like?

• <tool>?
• <phase-group>?
• tool-id, phase-name attributes?
• What am I responsible for preserving?

Problem

By the way, how do I know I was supposed to translate this?

Goal

Add alt-trans support to OpenTM2.

OR

"alt-trans: Can the Naive Implementor Do It?"

ANSWER

Not really.

What's the real problem?

What's the real problem?

• I'm a doofus.

What's the real problem?

• I'm a doofus.
• XLIFF 1.2 is too complicated.

What's the real problem?

• I'm a doofus.
• XLIFF 1.2 is too complicated.
• XLIFF 1.2 lacks processing expectations.

And to me that [processing
expectations] is where the
biggest interoperability issue resides.

- Yves Savourel

My take of user feedback is that the
standard does not ensure interoperability
because the lack of well-defined
processing expectations.

- David Filip

Two types of conformance are defined:
1. conformance of XLIFF markup

declarations

2. conformance of processing
requirements for XLIFF markup

- Christian Lieske

We need to start including in the specs
what "XLIFF enabled tools" should do
with each and every attribute or element
we include in the specs. If there are no
defined expectations for a given element,
we should consider dropping it.

- Rodolfo M. Raya

What are processing expectations?

Docbook

• <emphasis> processing expectations:

Formatted inline. Emphasized text is traditionally
presented in italics or boldface. A Role attribute of bold
or strong is often used to generate boldface, if italics is
the default presentation.

XLIFF processing expectations

match-quality processing expectations:

XLIFF processing expectations

match-quality processing expectations:
• match-quality must be a whole, positive, decimal

number between 0 and 100, inclusive.

XLIFF processing expectations

match-quality processing expectations:
• match-quality must be a whole, positive, decimal

number between 0 and 100, inclusive.
• Higher match-quality indicates a better match.

XLIFF processing expectations

match-quality processing expectations:
• match-quality must be a whole, positive, decimal

number between 0 and 100, inclusive.
• Higher match-quality indicates a better match.
• match-quality values are only comparable within a
<trans-unit>, and only for <alt-trans> with the same
tool-id attribute.

XLIFF processing expectations

match-quality processing expectations:
• match-quality must be a whole, positive, decimal

number between 0 and 100, inclusive.
• Higher match-quality indicates a better match.
• match-quality values are only comparable within a
<trans-unit>, and only for <alt-trans> with the same
tool-id attribute.

• It is recommended that when the tool-id is not
recognized, processors interpret a value of 74 and lower as
"low fuzzy", 75 to 99 (inclusive) as "high fuzzy", and 100 as
"exact".

XLIFF processing expectations

<trans-unit translate="..."> processing expectations:

XLIFF processing expectations

<trans-unit translate="..."> processing expectations:
• When translate="no", processors should display the
<source> and <target> as unmodifiable text.

XLIFF processing expectations

<trans-unit translate="..."> processing expectations:
• When translate="no", processors should display the
<source> and <target> as unmodifiable text.

• When translate="yes", processors should display the
<source> as unmodifiable text, and the <target> as
modifiable text.

What are processing expectations?

The hard part:

What are processing expectations?

The hard part:
• How do we transform an XLIFF document...

What are processing expectations?

The hard part:
• How do we transform an XLIFF document...
• based on the execution of a localization process...

What are processing expectations?

The hard part:
• How do we transform an XLIFF document...
• based on the execution of a localization process...
• so that other tools will accept the new document...

What are processing expectations?

The hard part:
• How do we transform an XLIFF document...
• based on the execution of a localization process...
• so that other tools will accept the new document...
• and understand what we've done.

What are processing expectations?

Docbook

• <emphasis> processing expectations:

Formatted inline. Emphasized text is traditionally
presented in italics or boldface. A Role attribute of bold
or strong is often used to generate boldface, if italics is
the default presentation.

What are processing expectations?

Docbook

• <emphasis> processing expectations:

Formatted inline. Emphasized text is traditionally
presented in italics or boldface. A Role attribute of bold
or strong is often used to generate boldface, if italics is
the default presentation.

• But interchange requires a 41-point "interchange
questionnaire"!

What are processing expectations?

Processing expectations for XLIFF transforms:

What are processing expectations?

Processing expectations for XLIFF transforms:

• Conformance checking of (input, output) ...

What are processing expectations?

Processing expectations for XLIFF transforms:

• Conformance checking of (input, output) ...
• specified in pseudo-code ...

What are processing expectations?

Processing expectations for XLIFF transforms:

• Conformance checking of (input, output) ...
• specified in pseudo-code ...
• with respect to the execution of a localization process.

modcase processing expectations

The modcase transform operates on strings. It may only
change the case of characters.

• "Abc" => "Abc" conformant
• "Abc" => "aBC" conformant
• "Abc" => "cbA" not conformant

mod_case processing expectations

modcase_ok(string old, string new) {
 assert(tolower(old) == tolower(new));
}

<xs:element name="xliff">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="unbounded"
 ref="xlf:file"/>
 </xs:sequence>
 <xs:attribute name="version" fixed="2.0"
 use="required"/>
 </xs:complexType>
</xs:element>

translate_xliff_ok(xliff old, xliff new) {
 assert(same_attributes(old, new));
 assert(same_children(old, new));

 iterator old_children = child_iterator(old);
 iterator new_children = child_iterator(new);
 while (! empty(old_children)) {
 assert(translate_file_ok(next(old_children),
 next(new_children)));
 }
}

<xs:element name="file">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1"
 ref="xlf:skeleton"/>
 <xs:element minOccurs="1" maxOccurs="unbounded"
 ref="xlf:unit"/>
 </xs:sequence>
 <xs:attribute name="srclang" use="optional"/>
 <xs:attribute name="tgtlang" use="optional"/>
 <xs:attribute name="original" use="optional"/>
 <xs:attribute name="skeleton" use="optional"/>
 </xs:complexType>
</xs:element>

translate_file_ok(file old, file new) {
 assert(same_attributes(old, new));
 assert(same_children(old, new));

 if (has_child(old, "skeleton")) {
 assert(same_xml(get_child(old, "skeleton"),
 get_child(new, "skeleton")));
 }

 iterator old_units = child_iterator(old, "unit");
 iterator new_units = child_iterator(new, "unit");
 while (! empty(old_units)) {
 assert(translate_unit_ok(next(old_units),
 next(new_units)));
 }
}

<xs:element name="segment">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1"
 ref="xlf:source"/>
 <xs:element minOccurs="0" maxOccurs="1"
 ref="xlf:target"/>
 <xs:element minOccurs="0" maxOccurs="1"
 ref="xlf:notes"/>
 <xs:element minOccurs="0" maxOccurs="1"
 ref="xlf:matches"/>
 </xs:sequence>
 <xs:attribute name="id" use="optional"/>
 <xs:attribute name="translate" type="xlf:yesNo"
 default="yes"/>
 <xs:attribute name="approved" type="xlf:yesNo"
 default="no"/>
 </xs:complexType>
</xs:element>

translate_segment_ok(segment old, segment new) {
 assert(same_attributes(old, new));
 assert(same_xml(get_child(old, "source"),
 get_child(new, "source")));

 if (has_child(old, "matches")) {
 assert(has_child(new, "matches"));
 assert(same_xml(get_child(old, "matches"),
 get_child(new, "matches")));
 }

 if (has_child(old, "notes")) {
 assert(has_child(new, "notes"));
 translate_notes_ok(get_child(old, "notes"),
 get_child(new, "notes"));
 }
 ...
}

translate_segment_ok(segment old, segment new) {
 ...
 if (get_attribute(old, "translate") == "no"
 // || translator didn't translate this segment) {
 assert(has_child(old, "target") ==
 has_child(new, "target"));
 if (has_child(old, "target")) {
 assert(same_xml(get_child(old, "target"),
 get_child(new, "target")));
 }
 } else { // translate="yes"
 translate_target_ok(old, new);
 }
}

<xs:element name="target">
 <xs:complexType mixed="true">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 ref="xlf:sc"/>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 ref="xlf:ec"/>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 ref="xlf:ph"/>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 ref="xlf:pc"/>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 ref="xlf:cp"/>
 </xs:sequence>
 <xs:attribute ref="xml:lang" use="optional"/>
 <xs:attribute ref="xml:space" use="optional"/>
 </xs:complexType>
</xs:element>

translate_target_ok(segment old, segment new) {
 // ???
 // Do we require there to be a target?
 // What inline elements are allowed?
}

XLIFF processing expectations

Wait a minute:

XLIFF processing expectations

Wait a minute:
• How did we know this was a translation process?

XLIFF processing expectations

Wait a minute:
• How did we know this was a translation process?
• It was implicit.

XLIFF processing expectations

Wait a minute:
• How did we know this was a translation process?
• It was implicit.
• Make it explicit!

XLIFF processing expectations

Straw man proposal:

<xliff version="2.0" process="translate">
 ...
</xliff>

transform_ok_xliff(xliff old, xliff new) {
 if (get_attribute(old, "process") == "translate") {
 return translate_xliff_ok(old, new);
 } elseif (get_attribute(old, "process") == "review") {
 return review_ok_xliff(old, new);
 }
 elseif ...
}

XLIFF processing expectations

Limitations and challenges:

XLIFF processing expectations

Limitations and challenges:

• Only handles out-and-back workflow.

XLIFF processing expectations

Limitations and challenges:

• Only handles out-and-back workflow.
o Challenge: processing expectations for a multi-step

workflow.

XLIFF processing expectations

Limitations and challenges:

• Only handles out-and-back workflow.
o Challenge: processing expectations for a multi-step

workflow.
• Only handles a fixed set of process types.

XLIFF processing expectations

Limitations and challenges:

• Only handles out-and-back workflow.
o Challenge: processing expectations for a multi-step

workflow.
• Only handles a fixed set of process types.

o Challenge: extensible process types.

Conclusions

Processing expectations:

Conclusions

Processing expectations:

• Tell the implementer exactly what to do.

Conclusions

Processing expectations:

• Tell the implementer exactly what to do.
• Can show that an implementation is not conformant.

Conclusions

Processing expectations:

• Tell the implementer exactly what to do.
• Can show that an implementation is not conformant.
• Promote interoperability.

Conclusions

Processing expectations:

• Tell the implementer exactly what to do.
• Can show that an implementation is not conformant.
• Promote interoperability.
• Are laborious to formulate.

Conclusions

Processing expectations:

• Tell the implementer exactly what to do.
• Can show that an implementation is not conformant.
• Promote interoperability.
• Are laborious to formulate.
• Require brutal simplification.

Conclusions

Processing expectations:

• Tell the implementer exactly what to do.
• Can show that an implementation is not conformant.
• Promote interoperability.
• Are laborious to formulate.
• Require brutal simplification.
• Provide a solid foundation for new features.

Conclusions

Now, I return to this young [standard].
And the communication I have got to
make is, that [it] has great expectations.

- Charles Dickens

Conclusions

Now, I return to this young [standard].
And the communication I have got to
make is, that [it] has great expectations.

- Charles Dickens

• ... with processing expectations.

Conclusions

Now, I return to this young [standard].
And the communication I have got to
make is, that [it] has great expectations.

- Charles Dickens

• ... with processing expectations.
• It's not going to be easy.

Conclusions

Now, I return to this young [standard].
And the communication I have got to
make is, that [it] has great expectations.

- Charles Dickens

• ... with processing expectations.
• It's not going to be easy.
• It will require leaving out features.

Conclusions

Now, I return to this young [standard].
And the communication I have got to
make is, that [it] has great expectations.

- Charles Dickens

• ... with processing expectations.
• It's not going to be easy.
• It will require leaving out features.
• But it's necessary for effective interoperability.

Conclusions

Now, I return to this young [standard].
And the communication I have got to
make is, that [it] has great expectations.

- Charles Dickens

• ... with processing expectations.
• It's not going to be easy.
• It will require leaving out features.
• But it's necessary for effective interoperability.
• And it's best for the future of XLIFF.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

