Resolution Specification Strawman Specification

Gabe Wachob, gwachob@visa.com
June 3, 2003

Version 0.1
1Introduction to Resolution Architecture

1Phase 1: Naming Authority Resolution

1DNS-specified Naming Authority Resolution (DNAR)

2Abstract Naming Authority Resolution Framework (ANARF)

4XRI-HTTP Lookup (NA1)

5DDDS-Based Lookup (NA2)

5Phase 2: Local Access

5Local Access Protocol Common Features

5Format of Local Access Protocol Descriptors

7Local Access Protocols

7THTTP Local Access Protocol

8LDAP Local Access Protocol

Introduction to Resolution Architecture

XRIs resolution is broken into two steps. The Naming Authority Resolution step converts the “naming authority” (should use the BNF production name) into a set of service locations and protocol descriptors. These descriptors identify one of several “local access” protocols. The second phase of resolution is the application of one of the “local access” protocols to the full XRI.

Phase 1: Naming Authority Resolution

Naming Authority Resolution is the process of finding a system representing a naming authority identified by the “naming authority” (should use the BNF production name) segment of the XRI. That segment of the XRI can either be in the form of a DNS name (DNS-specified Naming Authority – if the XRI starts with //) or a list of abstract string nodes (Abstract Naming Authority) (again, refer to BNF terminology). Whether the DNS-specified Naming Authority Resolution (DNAR) or the Abstract Naming Authority Resolution Framework (ANARF) is used, the result is a list of local access endpoints. Each item in the list contains a transport level address and service descriptor describing each endpoint. The resolving client can choose which pair of endpoint it wishes to use to access data, attributes, or services associated with the XRI.

DNS-specified Naming Authority Resolution (DNAR)

The process for resolving DNS-identified naming authorities is a DDDS-based algorithm which takes advantage of NAPTR and SRV records associated with DNS names.

The DDDS application is defined with the following attributes:

	Application Unique String:
	The XRI being resolved

	First Well Know Rule:
	The DNS name specified in the Naming Authority Name segment

	Flags:
	“s” for terminal pointing to an SRV record or “u” which means that the value of the NAPTR regex expression result is a URI (see RFC 3404)

	Service Parameters:
	See section 4.4 of RFC3404 for the service types. We’ll be defining new “protocols”, but maybe reusing thttp for the local access protocol (which only happens at a “terminal” step). This will only point to This will need expanding. There is no value in the service field unless there is one of the terminal flags present (“s” or “u”)

	Valid Databases:
	DNS from RFC 3403

The basic DDDS algorithm is performed with the DNS name in the XRI as the “initial key” and the full XRI as the application unique identifier. Two terminal flags are defined “u” and “s”. The result of this DDDS application is a set of protocol descriptor/transport-level address pairs.

The DNS name is resolved using a query type of “NAPTR”. This NAPTR record must have a service flag which matches “u” or “s”. The result of this step is a set of pairs of transport level addresss and service descriptors. Each pair describes a local access protocol instance which can be used to access the Naming Authority associated with the XRI.

If the flag is “u”, then the NAPTR regex is applied to the original XRI (or if the regex is empty, the replacement field is applied) and the result is a URI which describes the transport-level endpoint for the Naming Authority associated with this XRI.

If the flag is “s”, then the regex is applied to the original XRI (or if the regex is empty, the replacement field is applied) and the result is a domain name. That domain name must have an SRV record associated with it. This SRV record describes the IP address and port number describing the endpoint for the Naming Authority.

In either case, the services field describes the protocols available at the transport-level address.

Abstract Naming Authority Resolution Framework (ANARF)

The process for resolving abstractly-identified naming authorities is an iterative algorithm, with one call to to a resolution mechanism performed for each node of the naming authority name. There are multiple of these resolution mechanisms defined, and more than one can be used within the process of resolving a naming authority name. Only one mechanism is used for each node in the naming authority name.

Terms to Define: Naming Authority Name, Abstract Naming Authority Resolution Mechanism (ANARF Resolution Mechanism), others?

The ANARF algorithm results in a set of endpoint and service descriptors pointing to local access services that can provide data or services related to the resource identified by the XRI.

The ANARF algorithm starts with a set of data object comprising an “iteration state”. These data objects are changed at the end of each execution of a ANARF resolution mechanism (step X below).

· NameNode: Current name node being resolved (ie 'a', 'b', or 'c' in the Naming Authortiy name “a.b.c”)

· A list of tuples of the following items, each of which is called a NameAuthority:

· AuthorityLocation: Network endpoint that is the naming authority for the current NameNode. Usually (always?) this is a URL.

· AuthorityScheme: A service descriptor that indicates the protocol that the associated AuthorityLocation implements. This should be specified within a domain of well known identifiers that map to well known NA resolution mechanisms specified for the purpose of XRI Naming Authority resolution. Two of these mechanisms are defined in this document (na1 and na2)

These data objects are initialized at the beginning of the ANARF algorithm based on information that is “well known” for a given identifier community. That is, to define an “identifier community”, the community picks advertises (out of band) NameAuthority elements to members of the community.

The following steps are performed iteratively, each time resulting in a change to the iteration state. After the last iteration (corresponding to the last node in the naming authority segment), the NamingAuthority elements are interpreted to point to local access endpoints (and protocols), not naming authority lookup endpoints.

1) Select a NameAuthority from the list of NameAuthority objects in the iteration state. The choice of which NameAuthority element to choose is completely dependent on the resolver’s policies. In many cases, there will only be one NameAuthority element present. The absence of NameAuthority objects signifies a “XRI could not be resolved” state and terminates the entire XRI resolution.

2) Peform the lookup to the Name Authority by applying the NameNode through the AuthorityScheme protocol to the AuthorityLocation. For example, in the first step of resolving naming authority name ‘a.b.c’, one might lookup ‘a’ (NameNode) using the xri-http resolution mechanism (AuthorityScheme) at a particular URL (AuthorityLocation).
The result of step 2 must be a set of data that corresponds to a new list of NameAuthority objects. That is, the resolution mechanism must result in a set of data pairs, each of which contains a protocol descriptor and protocol endpoint URL.

3) If there are more nodes in the Naming Authority Name, then update NameNode to contain the next node of the Naming Authority Name and replace the list of NameAuthority elements with the results of step 2.

4) If there are no more nodes in the Naming Authority Name, then update NameNode to contain the entire XRI and replace the list of NameAuthority elements with the results of step 2. This terminates the Naming Authority Resolution phase. The local access phase of XRI resolution is then performed with the state information set in this step.

XRI-HTTP Lookup (NA1)

Each iteration of the NA Resolution is a specially formatted HTTP (or HTTPS) request and response which returns data which is appropriate for constructing a new set of NameAuthority objects.

This ANARF Resolution Mechanism has the service descriptor of “na1”. The AuthorityLocation associated with an “na1” NameAuthority entry must contain an absolute HTTP or HTTPS URL.

At the beginning of the “na1” step, the CurrentName is appended to the AuthorityLocation URL. If the AuthorityLocation URL does not end with a “/”, then a “/” must be inserted between the AuthorityLocation and the URL. The CurrentName MUST be URL-escaped (reference) before it is appended to the AuthorityLocation URL.

The resolving client MUST use the HTTP/1.1 protocol. All HTTP semantics are available to the resolving client and Naming Authority. Specifically, redirects, security, caching and other HTTP-defined semantics should be employed where necessary. However, for the purposes of interoperability and ease of implementation, use of such features should be minimized to the extent possible.

The content of the result of the HTTP request is a document which contains a list of newline-separated (better way to say this?) lines of plain text. The document is of content-type “text/plain”. Each line is of the following form:

<service descriptor><space><endpoint address>

Service descriptor is one of the legal values for AuthorityScheme (including ANARF resolution mechanisms and local access protocols). The endpoint address is a uri. For services descriptors requiring a DNS name (such as NA2), the uri scheme “dns:” should be use to describe a dns name (do we need a formal definition here?)

If this XRI-HTTP lookup is not the final iteration in the ANARF protocol, then the service descriptor and endpoint address values map directly into a list of NameAuthority objects needed for the next iteration in the ANARF protocol.

If this XRI-HTTP lookup is the final iteration of the ANARF protocol, then the service descriptor is of the form found in Section XX, “Format of Local Access Protocol Descriptors” and describes an endpoint providing a local access protocol.

Example:

The name authority is available at a HTTP na1 endpoint, an HTTPS na2 endpoint, and at a domain name for use with na2 (DDDS).

na1 http://next.step.example.com/resolve/b/

na1 https://alternate.step.example.com/resolve/c/

na2 dns:my.nazone.example.com

Example:

There is a thttp-based I2R service for accessing wsdl associated with the XRI and a ldap-based I2R service for accessing wsil associated with the XRI. See section XXX below for the format and meaning of local access service descriptors.

thttp+I2R/wsdl http://authority.example.com/uri-res/

ldap+I2R/wsil ldap://user@foo.ldap.example.com/
DDDS-Based Lookup (NA2)

Each iteration of the NA Resolution is a complete run of a DDDS-based algorithm specified here (called NA2). For the purposes of DDDS, the “identifier” being resolved is NameNode.

This ANARF Resolution Mechanism has a service descriptor of “na2”. For this resolution mechanism, AuthorityLocation is interpreted as a DNS hostname, and the following procedure is followed:

1) The initial DNS address for running the DDDS application is extracted from AuthorityLocation

2) The DDDS algorithm for XRI Naming Authorities is run through with CurrentName as the identifier applied to each NAPTR record in the DDDS process (the “Application Unique String” from RFC 3401). The DDDS algorithm runs until it reaches a matching NAPTR record with a “s” or “u” flag.
The “u” flag means that the result of applying the CurrentName to the regex in the NAPTR is a URI describing a network endpoint. For each service listed in this NAPTR record, a new NamingAuthority is created with AuthorityScheme set to the service descriptor and AuthorityLocation set to the URI value that results from the regex application.
The “s” flag means that the result of applying the CurrentName to the regex is a domain name which is expected to have associated SRV records describing a network endpoint. For each service listed in this NAPTR record, a new NamingAuthority is crated with AuthorityScheme set to the

The DDDS XRI Naming Authority Application is formally defined here:

	Application Unique String:
	CurrentName from the XRI Abstract Naming Authority Resolution Framework

	First Well Know Rule:
	The first key is AuthorityLocation

	Flags:
	“s” (a terminal flag) which signifies that the result of the NAPTR regex/replacement is a domain name which has one or more SRV records associated with it.

“u” (a terminal flag) which signifies that the result of the NAPTR regex/replacement is a URI (see RFC 3404).

The absence of a terminal flag means that the DDDS resolution continues with the domain name that is a result of applying the regex/replacement to the CurrentName. In this case, DDDS continues with the key equal to this domain name.

	Service Parameters:
	If this DDDS resolution is NOT the last step in the ANARF protocol, then the service must indicate a ANARF resolution mechanism (e.g. ‘na1’ or ‘na2’ that are defined in this document). This indicates that the client resolver may use the indicated resolution procotol and endpoint for the next iteration in the ANARF protocol.

If this is the last iteration in the ANARF protocol, the service types must indicate a local access protocol. In this case, see Section X, “Format of Local Access Protocol Descriptors” for the format of the service parameters.

	Valid Databases:
	DNS from RFC 3403

.

Phase 2: Local Access

Local Access Protocol Binding Common Features

Local access protocols provide the interaction between users of XRI identifiers and the naming authorities that define the namespace in which the local part of the XRI is defined(make reference to BNF part). The form of this access is not defined within the XRI specification. Instead, this specification defines a framework for local access protocols, including how they are described, and provides several instances of such local access protocol bindings that can be used with XRIs.

All Local Access Protocol bindings must have certain features:

· Each protocol binding must be assigned a “local access service descriptor” – a short string that unambiguously identifies that protocol’s use as a local access protocol completely, including the selection of any options that the protocol may otherwise provide. For example, if a local access service provides a unauthenticated version and an authenticated version, there should be separate service descriptors for each.

· Each local access protocol binding must unambiguously describe the way the xri is used with the protocol. For example, if a local access protocol has several ways of querying a directory, the protocol binding should specify which way the xri is converted into the protocol-specific query. Some local access protocols are read/write and allow data to be sent to the naming authority beyond just the xri itself. Each binding should specify enough information to make its use clear.

· Each local access protocol binding should describe the data items associated with the query (in the case of a read/write local access protocol) and the response. Where different types of data are possible, the binding should provide a way of describing the data type as a “sub-part” of the service descriptor. (need to mention this in the naming authority resolution part above?). For example, thttp+I2R/wsdl indicates a thttp I2R service for getting wsdl files. The “type descriptor” must be recognized by both naming authority and resolver (is there some sort of registry requirement here?)

Format of Local Access Protocol Descriptors

Generally, the format for a local access protocol descriptor follows that from RFC 3404, but with a modification to include the data type associated with the service (if needed).

 service_field = protocol *("+" rs)

 protocol = ALPHA *31ALPHANUM

 rs = ALPHA *31ALPHANUM *(“/” type)

 type = ALPHA *31ALPHANUM

 ; The protocol and type fields are limited to 32

 ; characters. The protocol, rs, and type fields

 ; must start with an alphabetic.
Note that the protocol element is always required for local access protocol descriptors.

Examples (the type descriptors here are hypothetical and not yet defined):

To describe a thttp-based service to return a wsdl document corresponding to an XRI:

thttp+I2R/wsdl

To describe a thttp-based service to return a canonical XRI for a XRI:

thttp+I2I

To describe a ldap-based service to return a WSIL document corresponding to an XRI:

ldap+I2R/wsil

Local Access Protocol Bindings

THTTP Local Access Protocol

(Probably need to rename from thttp to something XRI specific, since its not really RFC2169 compliant)

The functionality and content of the response of this local access protocol is defined in RFC 2438.

THTTP is based on a simple HTTP 1.1 (or HTTPS if the protocol descriptor ‘thttps’ is used) GET request.

The actual GET request is quite simple, and is constructed from several pieces of data. The NameAuthority object contains within the following objects these data items:

· AuthorityScheme: the local access descriptor, which includes (from the BNF for Local Access Protocol Descriptors) a protocol descriptor, and a series of service descriptor, each of which may have an associated type descriptor.

· AuthorityLocation: the network address where the naming authority can be reached. In the case of thttp this is an HTTP URL. IN the case of thttps, this is an HTTPS URL.

The URL to which the GET request is sent is constructed by appending the network address (a HTTP or HTTPS URL) with a trailing slash (if the URL does not already have one), followed by the service descriptor, followed by a slash, followed by the type descriptor and a slash if the type descriptor is provided, followed by the URL-encoded XRI.

Example:

Suppose the NamingAuthority which is discovered for the xri “xri://a.b.c/1.2.3” contains the following fields:

AuthorityScheme: thttpd+I2R/wsil+I2R/wsdl

AuthorityLocation: http://xriaccess.example.com
Then a local access request for wsdl associated with the XRI using the thttpd I2R service would be invoked by performing a HTTP GET to the following URI:

http://xriaccess.example.com/I2R/wsil/xri:%2f%2fa.b.c%2f1.2.3

The result would be a WSDL document associated with xri://a.b.c/1.2.3

LDAP Local Access Protocol

TBD

Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
