
[image: image1.png]

Extensible Resource Identifier (XRI) Syntax and Resolution Specification
Working Draft 09, 8 October 2003

Document identifier:

wd-xri-specification-09
Location:

http://www.oasis-open.org/committees/xri
Editors:

Gabe Wachob, Visa International <gwachob@visa.com>

Drummond Reed, OneName <drummond.reed@onename.com>

Dave McAlpin, Epok <dave.mcalpin@epokinc.com>

Mike Lindelsee, Visa International <mlindels@visa.com>

Peter Davis, Neustar <peter.davis@neustar.biz>

Nat Sakimura, NRI <n-sakimura@nri.co.jp>

Abstract:

This document is the normative technical specification for XRI syntax and resolution. For an introduction to the uses and features of XRIs, see the non-normative XRI Primer.

Status:

This document is a working draft updated periodically on no particular schedule. Send comments to the editors.
Committee members should send comments on this specification to the xri@lists.oasis-open.org list. Others should subscribe to and send comments to the xri-comment@lists.oasis-open.org list. To subscribe, send an email message to xri-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the XRI TC web page (http://www.oasis-open.org/committees/xri/).

The errata page for this specification is at http://www.oasis-open.org/committees/xri/yyy.

Table of Contents

4Introduction

41.1 Overview of XRIs

41.1.1 Generic Syntax

51.1.2 Examples

61.1.3 URI, URL, URN, and XRI

61.2 Design Considerations

61.2.1 Abstraction and Independence

61.2.2 Persistence and Reassignability

71.2.3 Human-friendliness and Machine-friendliness

71.2.4 Internationalization

71.2.5 Cross-Context Identification

71.2.6 Authority, Delegation, and Federation

71.2.7 Security and Privacy

71.2.8 Extensibility

71.3 Terminology and Notation

71.3.1 Keywords

71.3.2 Syntax Notation

81.3.3 Glossary

112
Syntax

112.1 Syntax Components

112.1.1 Authority

112.1.1.1 URI Authority

122.1.1.2 XRI Authority

132.1.1.2.1 Global Context Symbols (GCS)

132.1.1.2.2 Cross-References

142.1.2 Path

152.1.3 Query

152.1.4 Fragment

152.2 Characters

152.2.1 Reserved Characters

162.2.2 Unreserved Characters

162.2.3 Escaped Characters

162.2.3.1 Escaped Encoding

162.2.3.2 Converting XRIs to URIs

182.2.3.3 XRI-specific conversion for use in URIs

192.2.3.4 Converting URIs to XRIs

202.2.4 Excluded Characters

202.2.5 Legal Character Sequence

202.3 Character Encoding and Internationalization

202.4 Relative XRI References

212.4.1 Establishing a Base XRI

212.4.2 Obtaining the Referenced XRI

222.4.3 Leading Segments Containing “:”

222.5 Normalization and Comparison

243
Resolution

243.1 Introduction to Resolution Architecture

243.1.1 Assumptions

243.1.2 Phases of Resolution

253.2 Naming Authority Lookup

253.2.1 XRI Authority Lookup

253.2.1.1 Algorithm Initiation

263.2.1.2 Algorithm Iteration Step

273.2.1.3 Examples

293.2.1.4 Naming Authority Descriptor

313.2.2 DNS-Specified and IP-Address-Specified Authorities

313.2.3 User Relative XRIs

313.3 Local Access

323.3.1 Constructing a Local Access HTTP(S) URL

323.4 HTTP Headers

323.4.1 Caching

333.4.2 Location

333.4.3 Content-Location

333.4.4 Content-Type

333.4.5 X-XRI-Canonical

333.5 Other HTTP Features

343.6 Caching and Efficiency

343.7 Points of Extensibility

354
Security and Data Protection

354.1 XRI Usage in Legacy Infrastructure

354.2 Secure Resolution

354.3 XRI Usage in Evolving Infrastructure

365
References

365.1 Normative

365.2 Informative

38Appendix A. Collected ABNF for XRI

41Appendix B. Special Identifiers Assigned by the XRI Specification

42Appendix C. Transforming HTTP URIs to XRIs

43Appendix D. XML Schema for XRI Naming Authority Descriptor

45Appendix E. Using Cross References to Specify Data Types During Local Access (Non-normative)

46Appendix F. Acknowledgments

47Appendix G. Revision History

48Appendix H. Notices

49Appendix I. Issues

Introduction

1.1 Overview of XRIs

An Extensible Resource Identifier (XRI) provides a standard means of abstractly identifying a resource independent of any given concrete representation of that resource (or, in the case of a completely abstract resource, independent of any representation at all). XRIs are defined similarly to URIs in "Uniform Resource Identifiers (URI): Generic Syntax" [RFC2396] but contain additional syntactical elements and extend the unreserved character set to include characters beyond those allowed in generic URIs. To accommodate applications that expect generic URIs, rules are defined that allow an XRI to be transformed into a conformant URI as defined by [RFC2396]. Since a revision of RFC 2396 is currently a work in progress, the XRI scheme also incorporates some simplifications and enhancements to generic URI syntax as proposed in [RFC2396bis].
In addition, XRI syntax is internationalized following the recommendations in "Guidelines for New URL Schemes" [RFC2718] and "Extensible Markup Language (XML) 1.0 (Second Edition)" [XML], and specifically the requirements of the "anyURI" datatype as specified in "XML Schema Part 2: Datatypes" [XMLSchema2]. To do this, the XRI scheme incorporates the syntax recommended in another work-in-progress, "Internationalized Resource Identifiers (IRIs)" [IRI]. [We should review the relevant portions of these docs and make sure we still agree with the statements above]
Although an XRI is not a Uniform Resource Name (URN) as defined in "URN Syntax" [RFC2141], fully persistent XRIs are also designed to meet the requirements set out in "Functional Requirements for Uniform Resource Names" [RFC1737].

This document specifies the ABNF that defines the XRI scheme. A valid XRI MUST conform to the ABNF specified in this document. In addition this document specifies a resolution framework for XRIs. An XRI MAY be resolved using one or more of the mechanisms specified by this framework.
Note that while [RFC2396bis] and [IRI] are cited in this document, they are both works in progress and are consequently non-normative. All relevant information from these proposals is reproduced here, so access to these documents, while helpful for its informative value, is not required.

1.1.1 Generic Syntax

URI syntax is designed to be simple and extensible, and XRI syntax is very similar. A fully-qualified XRI consists of the scheme name "xri:" followed by the same four optional components as a generic URI.

xri: authority / path ? query # fragment

The definitions of these components are, for the most part, supersets of those of the equivalent components in the generic URI syntax. One advantage of this approach is that the vast majority of HTTP URIs, which inherit directly from generic URI syntax, can be transformed to valid XRIs simply by changing the scheme from “http” to "xri". The relationship of HTTP URIs and XRIs and rules for this transformation are further discussed in Appendix C, "Transforming HTTP URIs to XRIs".

XRI syntax extends this generic URI syntax in six ways by providing syntactic support for:

1. Persistent and reassignable segments. Generic URI syntax does not distinguish between persistent and reassignable identifiers. XRI syntax enables the top-level authority segment as well as any subsequent path segment to be expressed as either persistent or reassignable.

2. Unlimited delegation. Generic URI syntax supports delegated identifiers (i.e., DNS names or IP addresses) within the top-level authority segment. XRI syntax supports delegation of both persistent and reassignable identifiers at any level of the path.

3. Cross-references. Generic URI syntax does not provide for nesting of URIs in order to share identifiers across contexts. Since this is particularly useful with abstract identifiers (e.g., to establish the generic type of a resource, or to share identifier metadata such as versioning), XRI syntax allows URIs (including XRIs) to be nested inside parentheses.

4. Internationalized character set. Generic URI syntax limits legal characters to a subset of the repertoire of US-ASCII characters. XRI syntax allows the much wider repertoire of Unicode characters, greatly facilitating the use of XRIs in languages other than English.

5. Global context symbols. In addition to generic URI syntax for DNS and IP authorities, XRI syntax provides shorthand symbols for establishing the global context of an identifier.

6. Non-resolvability. Generic URI syntax does not provide a way to indicate whether or not a URI is resolvable. Since an XRI may itself be the full representation of a non-resolvable, abstract resource (e.g., a concept like "love", "honor", or "user-friendly") that is used only for the purposes of establishing equivalence, XRI syntax permits an XRI value to be expressed as explicitly non-resolvable.

1.1.2 Examples

The following examples illustrate XRI syntax. They have minimal annotation and are only intended to give a sense of the scope of XRI syntax. For details and the normative syntax, see section 2.

xri://www.example.com/pages/index.html

--standard HTTP URI used as an XRI

xri://[2010:836B:4179::836B:4179]/pages/index.html

--using an IPv6 authority per RFC 2732

xri://www.example.com/inventory.parts/widget.subwidget.foobarator

--delegation of reassignable identifiers

xri://www.example.com/:inventory:parts/:12:7:234

--delegation of persistent identifiers

xri:@ExampleCorp

xri:@ExampleCorp.website

xri:=JohnDoe

xri:=JohnDoe.home

xri:=JohnDoe.work

xri:+flowers

xri:+flowers.rose

xri:+flowers.daisy

--global context symbols

xri://www.example.com/(+management)/(+CEO)

xri:(urn:oasis:spec:2040)/(+tableofcontents)

xri:(mailto:john.doe@example.com)/(+email.address)

xri:=JohnDoe.home/(+email.address)

xri:=JohnDoe.home/(+email.address).($v/3)

--cross-references

xri:(+flowers.rose)

xri:(//www.example.com/dictionary/flowers/rose)

--non-resolvable XRIs

1.1.3 URI, URL, URN, and XRI

The evolution and interrelationships of the terms "URI", "URL", and "URN" are explained in a report from the Joint W3C/IETF URI Planning Interest Group, "Uniform Resource Identifiers (URIs), URLs, and Uniform Resource Names (URNs): Clarifications and Recommendations" [RFC3305]. This report states in section 2.1:

"During the early years of discussion of web identifiers (early to mid 90s), people assumed that an identifier type would be cast into one of two (or possibly more) classes. An identifier might specify the location of a resource (a URL) or its name (a URN), independent of location. Thus a URI was either a URL or a URN."

This view has since changed, as the report goes on to state in section 2.2:

"Over time, the importance of this additional level of hierarchy seemed to lessen; the view became that an individual scheme did not need to be cast into one of a discrete set of URI types, such as "URL", "URN", "URC", etc. Web-identifier schemes are, in general, URI schemes, as a given URI scheme may define subspaces."

This conclusion is shared by [RFC2396bis], which states in section 1.1.3:

"An individual [URI] scheme does not need to be classified as being just one of "name" or "locator". Instances of URIs from any given scheme may have the characteristics of names or locators or both, often depending on the persistence and care in the assignment of identifiers by the naming authority, rather than any quality of the scheme."

The XRI scheme expressly embraces this precept. As an abstract URI, an XRI is explicitly intended to be used as a persistent identifier or long-term "name" for a resource. However XRIs are also resolvable and can be used as a method of locating a resource (including another XRI). Since in certain contexts it may be important to indicate explicitly whether an XRI is intended to be resolved or whether it is intended to be used only for identification, the XRI scheme includes syntax for expressing this difference. For more information see section 2.1.1.2.2, “Cross-References”.
1.2 Design Considerations

The full set of requirements for XRI syntax and resolution is documented in "XRI Requirements and Glossary v1.0" [XRIReqs]. A synopsis of the major design considerations is included here.

1.2.1 Abstraction and Independence

The preeminent requirement is that XRI syntax be fully abstract (i.e., independent of resource location, network, application, transport protocol, type, or security method). Although XRI syntax may be extended for specific uses, the generic XRI syntax is designed to represent pure UML-describable associations between resources (see [UML])
and thus to allow portability across all networks, directories, domains, and applications. [This UML reference kind of comes out of the blue. I think we should expand the explanation, maybe with text similar to the definition for “identifier”, or just remove it from this section]

1.2.2 Persistence and Reassignability

As noted in section 1.1.3 above, XRI syntax and resolution is designed to express and resolve fully persistent identifiers, fully reassignable identifiers, or any combination of persistent and reassignable identifier segments.

1.2.3 Human-friendliness and Machine-friendliness

XRI syntax and resolution is designed to support both human-friendly identifiers (HFIs—those optimized for human readability, memorability, and usability) and machine-friendly identifiers (MFIs—those optimized for machine processing and network efficiency). XRI syntax allows any combination of HFI and MFI components within a single XRI.

1.2.4 Internationalization

XRIs are designed to be rendered in the natural language of their intended consumer. They allow the Unicode range of characters [Unicode] and provide syntactical support for expressing optional language-dependent context metadata. As a result, XRIs extend the virtues of human readability, memorability, and usability to non-English speaking audiences.

1.2.5 Cross-Context Identification

XRI syntax and resolution is designed to allow the use of an absolute identifier in the context of another absolute identifier (i.e., for a URI, including an XRI, to be contained within another XRI). Such embedded identifiers are called cross-references, and they are key to XRI extensibility.

1.2.6 Authority, Delegation, and Federation

XRI syntax and resolution are designed to allow any resource to serve as a root authority, and for any authority to delegate to any other authority at any level of the path. Thus XRI design imposes no specific delegation model, network topology, or federation structure.

1.2.7 Security and Privacy

XRI syntax and resolution is designed to be adapted to any security model, method, or infrastructure, as well at to any privacy policy or framework. XRI design does not require sensitive data to be included in an identifier. If such data is needed in an XRI, the syntax permits encryption and obfuscation of identifier segments for enhanced security and privacy.

1.2.8 Extensibility

Like XML, the XRI scheme is designed to be extended and specialized by different identifier authorities, and also like XML, these extensions and specializations are designed to be interoperable. [Do we ever mention this again in the spec? The reference to XML extensibility probably needs to be backed up more explicitly]
1.3 Terminology and Notation

1.3.1 Keywords

The key words “MUST“,“MUST NOT“,“REQUIRED“,“SHALL“,“SHALL NOT“,“SHOULD“,“SHOULD NOT“,“RECOMMENDED“,“MAY“, and “OPTIONAL“ in this document are to be interpreted as described in [RFC2119]. When these words are not capitalized in this document, they are meant in their natural language sense.

1.3.2 Syntax Notation

This specification uses the same syntax notation as [RFC2396], namely, Augmented Backus-Naur Form (ABNF), defined in [RFC2234]

. As explained in RFC 2396, although the ABNF defines syntax in terms of the US-ASCII character encoding, XRI syntax should be interpreted in terms of the character that the ASCII-encoded octet represents, rather than the octet encoding itself. Like other URIs, how an XRI is represented in terms of bits and bytes on the wire is dependent upon the character encoding of the protocol used to transport it, or the character set of the document that contains it.
The following core ABNF productions are used by this specification as defined by section 6.1 of [RFC2234]

: ALPHA, CR, CTL, DIGIT, DQUOTE, HEXDIG, LF, OCTET, and SP. The complete XRI ABNF syntax is collected in Appendix A.

To simplify comparison between generic XRI syntax and generic URI syntax, the ABNF productions that are new to XRIs are shown with light green shading, while those inherited from [RFC2396] or [RFC2396bis] are shown with light yellow shading.

This is an example of ABNF specific to XRI.

This is an example of generic URI ABNF from RFC 2396 or 2396bis.

In addition, productions inherited from the IRI proposal [IRI] are prefixed with the letter "i" as they are in that document.

1.3.3 Glossary

A complete glossary of XRI-related terms is included in XRI Requirements and Glossary v1.0 [XRIReqs]. Following are the definitions central to this specification.

[Note: Are terms that need to be defined specific to internationalization?]
Absolute Identifier
An identifier that refers to a resource independent of the current context, i.e., using a global context. Mutually exclusive with "Relative Identifier".

Abstract Identifier

An identifier that is not directly resolvable to a resource, but is either: a) non-resolvable because it abstractly represents a non-network resource (see "Non-Resolvable Identifier"), or b) must be resolved to another identifier first (which may in turn be either another abstract identifier or a concrete identifier). A URN as described in [RFC2141] is an example of an abstract identifier. Abstract identifiers provide for additional levels of indirection in referencing resources which can be useful for a variety of purposes, including persistence, equivalence, human-friendliness, and data protection.

Authority (or Identifier Authority)

A resource that assigns identifiers to other resources. Note that in URI ABNF (and in the equivalence sections of XRI ABNF), the "authority" production refers explicitly to the top-level authority (i.e., the community root). However elsewhere in this specification the term "authority" refers more generally to the entity responsible for assigning and resolving identifiers at any level of delegation. [This makes it sound like we’re inconsistent in our own usage. Is that right?]
Community (or Identifier Community)

The set of resources that share a common identifier authority, typically a common root authority. Technically, the set of resources whose identifiers form a directed acyclic graph or tree.
 [This is a fairly esoteric question, but does the graph have to be acyclic? Intuitively, I’d say no but I haven’t thought about it enough to know for sure. I also may misunderstand the definition of “directed acyclic graph”.]
Concrete Identifier

An identifier that can be directly resolved to a resource, rather than indirectly to another identifier. Examples include the MAC address of a networked computer, a phone number (that rings directly to a specific device), and a postal address (that is not a forwarding address). All concrete identifiers are intended to be resolvable identifiers. Contrast with "Abstract Identifier".

Context (or Identifier Context)

The resource of which the identifier is an attribute, i.e. the backpointer of an identifier. [It’s really the thing the backpointer points to, isn’t it? In any case, I don’t think “backpointer” adds much clarity here.] Context is the parent resource that assigns the identifier for the target resource. Since multiple resources can assign an identifier for a target resource, the resource can be identified in multiple contexts. For absolute identifiers, the context is explicit, i.e., they have a known starting point. For relative identifiers, the context is implicit.

Cross-reference

An absolute identifier assigned in one context that is reused in another context. Cross-references are used primarily to identify logically equivalent resources in different domains or physical locations. For example, a cross-reference may be used to identify the same logical invoice stored in two accounting systems (the originating system and the receiving system), the same logical Web page stored on multiple proxy servers, the same datatype used in multiple databases or XML schemas, or the same abstract concept used in multiple taxonomies or ontologies.

Delegated Identifier

A multi-segment identifier in which different segments are assigned by different identifier authorities. Mutually exclusive with "Local Identifier".

Identifier

Per [RFC2396bis], anything that "embodies the information required to distinguish what is being identified from all other things within its scope of identification." In UML terms, an identifier is an attribute of a resource (the identifier context) that forms an association with another resource (the identifier target). The general term "identifier" does not specify whether the identifier is abstract or concrete, persistent or reassignable, human-friendly or machine-friendly, absolute or relative, local or delegated, or resolvable or non-resolvable.

Local Identifier

A single identifier, or any set of segments in a multi-segment identifier, that is assigned by the same identifier authority. Mutually exclusive with "Delegated Identifier".

Non-Resolvable Identifier

An identifier that does not directly reference a network resource or resource representation, but only abstractly represents a resource. A non-resolvable identifier is always an abstract identifier and does not have any corresponding data or metadata describing the resource it represents, thus it cannot be resolved in the conventional sense. From a machine perspective, the purpose of non-resolvable identifiers is to establish equivalence across contexts. Mutually exclusive with “Resolvable Identifier.”

Persistent Identifier

An identifier that is permanently assigned to a resource and that is intended never to be reassigned to another resource even if the original resource goes off the network, is terminated, or no longer exists. A URN as described in [RFC2141] is a persistent identifier. Mutually exclusive with "Reassignable Identifier".

Reassignable Identifier

An identifier that may be reassigned from one resource to another. Example: the domain name "example.com" may be reassigned from ABC Company to XYZ Company, or the email address "john@example.com" may be reassigned from John Smith to John Jones. Reassignable identifiers tend to be human-friendly identifiers because they often represent the mapping of semantic relationships onto network resources or resource representations. Mutually exclusive with "Persistent Identifier".

Relative Identifier

An identifier that refers to a resource only in relationship to the current context (i.e., the context in which the identifier is being resolved). [“is being resolved” may not be right. The context of a relative identifier is meaningful outside of resolution.] Mutually exclusive with "Absolute Identifier".

Resolvable Identifier

An identifier that references a network resource or resource representation and that can be resolved into data or metadata describing the target resource. Mutually exclusive with “Non-Resolvable Identifier.”

Resource

Per [RFC2396bis], "anything that can be named or described." Resources are of two types: network resources (those that are network addressable) and non-network resources (those that exist entirely independent of a network). Network resources in turn contain a subtype, resource representations. A resource representation may represent either a network resource or a non-network resource.

Resource Representation

A network resource that represents the attributes of another resource. A resource representation may represent either a network resource (such as an application) or a non-network resource (such as a person, organization, or concept
Target (or Identifier Target)

The resource referenced by an identifier. A target may be either a network resource (including a resource representation) or a non-network resource.

2 Syntax

2.1 Syntax Components

Generic XRI syntax consists of the scheme name "xri:" followed by the same hierarchical sequence of components as generic URI syntax. Taken as a whole, this sequence is referred to as the XRI value. Note that this document does not define a new URI scheme, but rather builds on generic URI syntax and defines a new identifier type that is largely compatible with existing URIs.

XRI
= "xri:" xri-value

xri-value
= [xri-path] ["?" xri-query] ["#" xri-fragment]

The path component can be hierarchical to any depth. A path can be globally absolute, relative to the local community, or relative to the current context, as discussed in section 2.4, “Relative XRIs”.

xri-path
= global-path / local-path / relative-path

global-path
= authority-part [local-path]

local-path
= "/" relative-path

relative-path
= *(["."] "./") xri-segments

2.1.1 Authority

XRI syntax supports the same set of authorities as generic URI syntax, called a URI authority. In addition it supports an XRI authority that provides two other mechanisms for specifying the global context of an identifier, as defined in section 2.1.1.2.

authority-part
= URI-authority / XRI-authority

2.1.1.1 URI Authority

In the context of an XRI, a URI authority is distinguished by the starting double slash ("//").

URI-authority
= "//" [userinfo "@"] host [":" port]

The syntax following this starting delimiter is inherited directly from [RFC2396bis], which simplifies the syntax in [RFC2396] and includes support for IPv6 addresses defined in [RFC2732]

. First, the "userinfo" sub-component permits identifying a user in the context of a host.

userinfo
= *(unreserved / escaped / ";" /

":" / "&" / "=" / "+" / "$" / ",")

Next, the "host" sub-component has three options for identifying the host: a domain name, an IPv4 address, or an IPv6 literal.

host
= [hostname / IPv4address / IPv6reference]

Note that the host identifier may be omitted; if so a default may be defined by the semantics of a specific URI scheme. No default is specified by the XRI scheme.

A hostname, after the transformation described in step 4 of section 2.2.3.2, MUST meet the rules defined in section 3.2.2 of [RFC2396]. The productions for “idomainlabel”, “qualified”, and “hostname”, therefore, have additional restrictions not reflected in the ABNF.

hostname
= idomainlabel qualified

qualified
= *("." idomainlabel) ["."]

 idomainlabel = 1*ucschar

domainlabel
= alphanum [0*61(alphanum / "-") alphanum]

alphanum
= ALPHA / DIGIT

IPv4address
= dec-octet "." dec-octet "." dec-octet "." dec-octet

dec-octet
= DIGIT

; 0-9

/ %x31-39 DIGIT

; 10-99

/ "1" 2DIGIT

; 100-199

/ "2" %x30-34 DIGIT

; 200-249

/ "25" %x30-35

; 250-255

Support for an IPv6 address literal was added by [RFC2396bis] following the syntax originally specified in [RFC2732]

. Note that because IPv6 literals use colons as delimiters, they must be encapsulated within square brackets. This is similar to the use of parentheses in XRI cross-references (see section 2.1.1.2.2, “Cross References”).

IPv6reference
= "[" IPv6address "]"

IPv6address =
6(h4 ":") ls32

/ "::" 5(h4 ":")

ls32

/ [h4] "::" 4(h4 ":")
ls32

/ [*1(h4 ":") h4] "::" 3(h4 ":")
ls32

/ [*2(h4 ":") h4] "::" 2(h4 ":")
ls32

/ [*3(h4 ":") h4] "::" h4 ":"
ls32

/ [*4(h4 ":") h4] "::"
ls32

/ [*5(h4 ":") h4] "::"
h4

/ [*6(h4 ":") h4] "::"

ls32
= (h4 ":" h4) / IPv4address

; least-significant 32 bits of address

h4
= 1*4HEXDIG

Lastly, a host identifier can be followed by an optional port number. XRI does not define a default port, so if the port is omitted in an XRI it is undefined.

port
= *DIGIT

2.1.1.2 XRI Authority

In addition to the authorities supported in generic URI syntax, XRIs support two other mechanisms for specifying the global context of an identifier. The first is via global context symbols (GCS’s) and the second is via cross-references (abbreviated in the ABNF as "xref").

XRI-authority
= (gcs-char xri-segment) / xref-authority
2.1.1.2.1 Global Context Symbols (GCS)

In support of the human-friendly identifier (HFI) requirements, XRIs offer a compact syntax for indicating the global context of an identifier. This approach uses the minimal possible metadata—a single prefix character—to provide the context for an XRI authority segment.

gcs-char
= "+" / "=" / "@" / "$" / "*"

The global context symbol characters were selected from the set of symbol characters that are valid in a URI under [RFC2396] in order to represent the following global contexts:

	Symbol Character
	Authority Type
	Establishes global context for

	+
	General public
	Identifiers for which there is no specific authority, i.e., that are established by public convention (e.g., in the English language, these would be the generic nouns).

	=
	Person
	Identifiers that represent an individual person.

	@
	Organization
	Identifiers that represent any authority other than the general public or an individual person.

	$
	OASIS XRI TC
	Identifiers established by the XRI specification for specific types of identifier metadata (e.g., language, version syntax, query syntax, etc.). See Appendix B, “Special Identifiers Assigned by the XRI-specification” for a list of these identifiers.

	*
	User-relative
	Identifiers for which the authority is relative to the current user (i.e., "user-shortcut XRIs").

Note that because the global context symbol precedes an xri-segment and the xri-segment production allows cross-references (below), the global context symbols can be used with any type of authority specified under any URI scheme by following a global context symbol with a cross-reference.

2.1.1.2.2 Cross-References

Cross-references are the primary extensibility mechanism in XRI. A cross-reference is either: a) an absolute URI, or b) a global XRI value. Note these are syntactically distinct because the former must start with a legal URI scheme, and consequently an ALPHA, while the latter must start with a symbol character. In either case, a cross-reference is enclosed in parentheses the same way an IPv6 literal is encapsulated in square brackets as specified in [RFC2732]

 (see section 2.1.1.1).

xref-authority
= xref ("." sub-segment / ":" sub-segment) *("."

 sub-segment / ":" sub-segment)

xref
= "(" (global-xri / URI) ")"

global-xri
= global-path ["?" xri-query] ["#" xri-fragment]

A cross-reference may appear at any node of any XRI except within a URI authority segment. When a cross-reference is used as the very first segment in an XRI, it enables any globally-unique identifier in any URI scheme to specify an authority (e.g., an HTTP URI, mailto URI, URN, etc.).
A cross-reference is also the means by which a XRI can be expressed as non-resolvable. To do this, the entire XRI is enclosed in parentheses. Note that this is the equivalent in the English language of putting a word or phrase in quotes to express that the author is referring to the word or phrase itself and not to its normal meaning. Examples:

The term "user-friendly" is used frequently in computing.

--English-language usage of a quoted term

xri:(+user-friendly)

--XRI equivalent of expressing the abstract concept of "user-friendly"
2.1.2 Path

As with URIs in general, the XRI path component is a hierarchal sequence of path segments separated by a slash ("/") character and terminated by the first question-mark ("?") or number sign ("#") character, or by the end of the XRI. The key difference is that while a URI path segment is considered opaque, an XRI path segment can have two types of sub-segments: dot-sub-segments and colon-sub-segments. [Note – we use two different conventions for symbols in this doc, one where the symbol is in parens and one where it isn’t. For instance, this section says question mark (“?”), while other sections say question mark “?”. Either is fine, although I think 2396 uses the latter. Whichever we choose, we should be consistent.]

xri-segments
= xri-segment *("/" xri-segment)

xri-segment
= (["."] sub-segment / ":" sub-segment)

*("." sub-segment / ":" sub-segment)

sub-segment
= *xri-pchar / xref

Dot-sub-segments specify reassignable identifiers and colon-sub-segments specify persistent identifiers (following the lead of URN syntax in [RFC2141]). The default is a reassignable identifier, so no leading dot is required if this is the first (or only) sub-segment. [Does this distinction between reassignable and persistent “segments” need to be spun on out a bit more? Gabe]

An XRI path segment can contain the same characters as a URI path segment with the exception of the dot (".") and the colon (":"), which if used will be interpreted as described above. If this interpretation is not desired for these characters, or for any other special XRI delimiters, these characters MUST be escaped when they appear in the path segment. See section 2.2.3, “Escaped Characters” for more information.

xri-pchar
= xri-unreserved / escaped / ";" / "!" / "*"

"@" / "&" / "=" / "+" / "$" / ","

Other than dot-sub-segments and colon-sub-segments (and cross-references within these), an XRI path segment is considered opaque by generic XRI syntax. As with URIs in general, XRI extensions or generating applications may define special meanings for other URI reserved characters for the purpose of delimiting extension-specific or generator-specific sub-components. For example, section 3.4 of [RFC2396] specifies the set of URI reserved characters that can be used within a query segment. [Are you sure? I think schemes and extensions can assign special meaning to unreserved characters, but only 2396 can assign meaning to reserved ones. But I also think I make this objection on every draft, so maybe it’s settled and I just don’t remember.]
2.1.3 Query

The XRI query component is identical to the URI query component as described in section 3.4 of [RFC2396] with one exception: it may begin with a cross-reference. This permits the incorporation of metadata in XRI syntax describing the query string syntax. See Appendix B, “Special Identifiers Assigned by the XRI Specification“ for more about query syntax identifiers.

xri-query
= [xref] * (pchar / "/" / "?")

The characters permitted in a query segment are the full set allowed in a URI path segment.

pchar
= unreserved / escaped / ";" /

":" / "@" / "&" / "=" / "+" / "$" / ","

2.1.4 Fragment

XRI syntax also supports fragments as described in section 4.1 of [RFC2396] with the exception that it may begin with a cross-reference.

xri-fragment
= [xref] * (pchar / "/" / "?")

Fragments are supported primarily for compatibility with generic URI syntax, as XRI syntax can directly address attributes or secondary representations of a primary resource to any depth. XRIs can also use cross-references to identify media types or other alternative representations of a resource.

2.2 Characters

The character set and encoding of an XRI is primarily inherited from generic URI syntax as defined in [RFC2396] and clarified in [RFC2396bis], however it also includes the expanded character set defined in [IRI]. XRI characters fall into the same three subsets as URI characters.

xri-characters
= xri-reserved / xri-unreserved / escaped

2.2.1 Reserved Characters

XRI reserved characters are used to delimit XRI syntax components and thus are a superset of the URI reserved character set. Specifically, four characters have been added: opening parentheses ("("), closing parentheses (")"), dot ("."), and asterisk ("*").

xri-reserved
= "/" / "?" / "#" / "[" / "]" / "(" / ")" / ";" / ":" /

"," / "." / "&" / "@" / "=" / "+" / "*" / "$"

If the use of an unescaped XRI reserved character as a data character would cause the interpretation of the XRI to be ambiguous, the character MUST be escaped as per the rules in section 2.2.3, “Escaped Characters”.

2.2.2 Unreserved Characters

With the exception of the expanded UCS character set for internationalization, the unreserved character set for XRIs is the same as that of URIs after the subtraction of the four characters noted above (all of which are in of the "mark" production of [RFC2396] and [RFC2396bis]).

xri-unreserved
= ALPHA / DIGIT / ucschar / xri-mark

xri-mark
= "-" / "_" / "!" / "~" / "'"

The principle difference between XRI and URI reserved character sets is the inclusion of the UCS character set.

 ucschar = %xA0-D7FF / %xF900-FDCF / %xFDF0-FFEF /

 %x10000-1FFFD / %x20000-2FFFD / %x30000-3FFFD /

 %x40000-4FFFD / %x50000-5FFFD / %x60000-6FFFD /

 %x70000-7FFFD / %x80000-8FFFD / %x90000-9FFFD /

 %xA0000-AFFFD / %xB0000-BFFFD / %xC0000-CFFFD /

 %xD0000-DFFFD / %xE1000-EFFFD

Escaping unreserved characters in an XRI does not change what resource is identified by that XRI. However, it may change the result of a URI comparison (see section 2.5, “Normalization and Comparison”), so unreserved characters should not be escaped unless necessary.

2.2.3 Escaped Characters

XRIs follow the same rules for escaping characters as URIs. That is, any data in an XRI MUST be escaped if: a) it does not have a representation using an unreserved character, and b) using a reserved character would cause the XRI to be misinterpreted. An XRI thus escaped is said to be in “escaped normal form”. For consistency, all characters that are not in the “xri-unreserved” production and that are not used as syntactical elements as defined in this specification SHOULD be escaped. In this context, misinterpretation applies to XRIs used directly (i.e. not as URIs). Rules for converting an XRI into a legal URI are discussing in section 2.2.3.2. In other words, an XRI is in escaped normal form if it is unambiguous per the ABNF provided in this document, but is a legal URI only after it is escaped according to the transformation described in section 2.2.3.2.

2.2.3.1 Escaped Encoding

XRIs use the same percent-encoding as URIs as per section 2.4.1 of [RFC2396]. An escaped octet is encoded as a character triplet consisting of the percent character "%" followed by the two hexadecimal digits representing that octet's numeric value.

escaped
= "%" HEXDIG HEXDIG

The uppercase hexadecimal digits “A” through “F” are equivalent to the lowercase digits “a” through “f”, respectively. XRIs that differ only in the case of hexadecimal digits used in escaped octets are equivalent. For consistency, uppercase digits SHOULD be used by XRI generators and normalizers.

2.2.3.2 Converting XRIs to URIs

Although XRIs can be used directly, there may be times when it is desirable to use an XRI in contexts that expect a URI reference as defined by [RFC2396]. In other cases it may be desirable to use an XRI in a context that allows an identifier containing characters disallowed by [RFC2396] but which provides a simple mapping into a legal URI. The “anyURI” tag in defined in [XMLSchema2] is an example of the second case, where an escaping procedure is defined for characters that would otherwise be illegal under [RFC2396]. Additionally, [IRI] is a work-in-progress that proposes a new protocol element - an Internationalized Resource Identifier, or IRI- and defines the process for converting an IRI to a URI. IRI to URI conversion differs from the conversion defined for “anyURI” in [XMLSchema2] primarily in that it includes an algorithm appropriate for internationalized domain names. There may be cases in which it is desirable to use an XRI in a context that expects an IRI.

This specification defines the process for transforming an XRI into a legal URI. Depending on the target application, it may be appropriate to terminate the transformation process before the final step. If the target application expects an identifier defined as “anyURI” in [XMLSchema2], for example, the transformation may terminate at the point at which the XRI has reached the threshold defined for protocol elements allowed under that specification. Where appropriate, the transformation steps below note such thresholds. Except for transformations specific to XRI syntax, these steps closely follow the algorithm proposed in [IRI].

Applications MUST map XRIs to URIs using the following steps (or any equivalent process that achieves the same result).

1. If the XRI is not encoded in UTF-8, convert the XRI to a sequence of characters encoded in UTF-8, normalized according to Normalization Form C (NFC) as defined in [UTR15].

2. If necessary, add font and language metadata (see note below). Addition of this metadata changes the resulting URI for the purposes of comparison. If one processor chooses to add this font and language metadata, and another does not, the result may be two URIs that are not considered equal.
3. Perform XRI-specific conversion defined in section 2.2.3.3. At this point the identifier may be used as an IRI.

4. If the XRI has a “hostname” component, replace it with the “hostname” component converted using the “ToASCII” operation defined in section 4.1 of [RFC3490], with the “UseSTD3ASCIIRules” flag set to true and the “AllowUnassigned” flag set to false. At this point the identifier may be used as “anyURI” defined in [XMLSchema2] or in a comparable context.

5. Replace each character that is disallowed in URI references with escaped triplet(s) as described in section 2.2.3.1, one escaped triplet for each octet in the UTF-8 encoding of the disallowed character. At this point the identifier may be used as a generic URI.

A note on step two above: in some languages, a UTF-8 encoded string (i.e. a sequence of UTF-8 encoded characters) does not contain enough information to determine how to properly render that string in the intended language. Specifically, to represent the glyph of a UTF-8 encoded character, language information and font information may be required. On the other hand, local language encoding always has the language and font information associated with it. To make it possible to revert back to the local language representation of an XRI, it may be necessary to record the language and font context of an XRI when converting to UTF-8. If UTF-8 encoding would lose information required to transform the XRI back into human readable form in the intended language and font, the transformation MAY include mark up by use of cross-references containing the “$l” and/or “$f” identifiers defined in Appendix B. Once the language and font context is declared it will be valid until it is reset by another “$l”/”$f” declaration.

The XRI-specific conversion described in step three is not idempotent (i.e. each time this step is applied it may yield different results). It is very important, therefore, that implementers are careful not to apply this step more than once since doing so may change the semantics of the identifier. In general, an application SHOULD use the least escaped version appropriate for the context in which the identifier appears. For example, if the context allows an XRI directly, the identifier SHOULD be in escaped normal form described in section 2.2.3. If the context allows an IRI but not a XRI, the identifier SHOULD be in the form that results from step three, and so on.

The form of the XRI that results from each step in this section is equivalent to the result of any other step. In other words, applying this conversion does not change the equivalence of the identifier (with the exception of $f and $l metadata additions).
2.2.3.3 XRI-specific conversion for use in URIs

This section describes issues that can arise when an XRI is converted to URI. It looks only at issues specific to XRI syntax and not, for example, at international character issues. It also defines a conversion operation that performs the XRI-specific transformations required during the conversion of an XRI into a generic URI. This conversion operation must be done in conjunction with the steps defined in section 2.2.3.2 in order to effect a complete conversion from an XRI to a URI. In other words, the conversion in this section has very limited utility on its own. It is intended to be used as part of the larger conversion process described in section 2.2.3.2.

XRIs can contain other URIs as cross-references (see Section 2.1.1.2.2, “Cross References”). These URIs can contain characters that, if unescaped, would cause misinterpretation when the XRI is converted to a URI. Consider the following XRI.

xri:@example/(xri:@example2/abc?id=1)

The generic parsing algorithm described in [RFC2396] would separate the above XRI into the following components

scheme = xri

authority = <undefined>

path = @example/(xri:@example2/abc?

query = id=1)

The desired separation is

scheme = xri

authority = <undefined>

path = @example/(xri:@example2?id=1)

query = <undefined>

To avoid this type of misinterpretation, certain characters in a cross-reference must be escaped when converting an XRI to a URI. In particular, cross-references must be converted such that the question mark “?” character is escaped as “%3F” and the number sign “#” character is escaped as “%28”.

The example above, then, would be expressed as:
xri:@example/(xri%3A@example2%3Fid=1)

A slash “/” character in a cross-reference can also be misinterpreted when the XRI is converted into a URI. Consider

xri://example.com/(@example/abc)

If this were used as a base URI as defined in section 5 of [RFC2396], the algorithm described in section 5.2 of [RFC2396] would append a relative-path reference to

xri://example.com/(@example/

instead of the intended

xri://example.com/

because the algorithm is defined in terms of the last (right-most) slash character. This problem is avoided by escaping slashes within cross-references as “%2F”. The above example, then, would be expressed as:
xri://example.com/(@example%2Fabc)

Note that ambiguity is possible if an XRI in escaped normal form contains characters that have been escaped to indicate that they should not be interpreted in their normal syntactical sense. For example, consider the following XRI in escaped normal form:
xri://example.com/(@example/abc%2Fd/ef)

This slash character between “c” and “d” is escaped to show that it’s not a syntactical element of the XRI, i.e. that it should be interpreted literally and not as a path separator. To preserve this type of distinction when converting an XRI to a URI, the percent “%” character must be escaped as “%25”. The above example, fully converted, would be:
xri://example.com/(@example%2Fabc%252Fd%2Fef)

The following, then, are the XRI-specific steps required to convert an XRI into a URI.

1. Escape all percent “%” characters as “%25” across the entire XRI.

2. Escape all number sign “#” characters that appear within a cross-reference as “%23”.

3. Escape all question mark “?” characters that appear within a cross-reference as “%3F”.

4.
5. Escape all slash “/” characters that appear within a cross-reference as “%2F”.

It is assumed that the XRI is in escaped normal form and all URIs in cross-references are in an escaped form appropriate to their schemes before the above rules are applied.
2.2.3.4 Converting URIs to XRIs

There may be times when it is desirable to convert an XRI in URI escaped form into an XRI in escaped normal form. This section gives a procedure to do such a conversion. Except for steps specific to XRIs, this procedure very closely follows the algorithm proposed by [IRI].

Conversion from an XRI in URI escaped form into an XRI in escaped normal form MUST use the following steps (or any equivalent process that achieves the same result).

1. If the identifier is not encoded in US-ASCII, convert it to a sequence of octets in US-ASCII.

2. If the identifier has a “hostname” component, replace it with the UTF-8 encoded “hostname” component converted using the “ToUnicode” operation defined in section 4.2 of [RFC3490], with the “UseSTD3ASCIIRules” flag set to true and the “AllowedUnassigned” flag set to false.

3. Convert all escaped characters (as defined in section 2.2.3.1) with their corresponding octets, except for the percent “%” character, those characters in the “reserved” production of [RFC2396] and US-ASCII characters disallowed in URIs by section 2.4.3 of [RFC2396].

4. Re-escape any octet produced in step 3 that is not part of a strictly legal UTF-8 octet sequence.
5. Perform the following XRI-specific conversions

a. Convert all escaped slash “/” characters to their corresponding octets.

b.
c. Convert all escaped question mark “?” characters to their corresponding octets.

d. Convert all escaped number sign “#” characters to their corresponding octets.

e. Convert all escaped percent “%” characters to their corresponding octets.

6. Encode the resulting sequence in UTF-8 (except for that portion already converted by step 3).

2.2.4 Excluded Characters

XRI syntax excludes the same characters as URI syntax for the same reasons as described in section 2.5 of [RFC2396] and [RFC2396bis]. Data octets corresponding to these characters must be escaped in order to be represented within an XRI.

excluded
= invisible / delims / unwise

invisible
= CTL / SP / %x80-FF

delims
= "<" / ">" / "%" / DQUOTE

unwise
= "{" / "}" / "|" / "\" / "^" / "`"

2.2.5 Legal Character Sequence

Not all ASCII sequences can be derived from UTF-8 sequences. A valid XRI character sequence MUST be derivable by escaping an equivalent UTF-8 sequence. [NOTE: This needs review/expansion and I don’t understand the issue. Maybe Nat can lend a hand on this. –Dave.

I believe this comes in the context of converting from a URI to an IRI – not all character sequences representable in URIs are “unescapable” to legal Unicode – in other words, you can encode a series of bytes in URIs which cannot be converted to legal Unicode. This comes up in our context only where we are converting URIs to XRIs, I believe.]
2.3 Character Encoding and Internationalization

The basic character encoding of XRI is UTF-8, as recommended by [RFC2718]. When an XRI is used as a human readable identifier, the representation of the XRI on the underlying document should use the character encoding of the underlying document. However, this string must be converted to UTF-8 before any further processing.
2.4 Relative XRI References

The authority component, as defined in 2.1.1, may be either a URI-authority (section 2.1.1.1) or an XRI-authority (section 2.1.1.2). In this section, “authority” should be understood as defined by section 2.1.1 of this specification and not in the narrower sense of section 3.2 of [RFC2396].

For a relative XRI reference that does not contain an authority component but whose base XRI contains an authority component that matches the URI-authority production, the rules for resolving relative references defined in section 5.2 of [RFC2396] apply.

For a relative XRI reference that does not contain an authority component but whose base XRI contains an authority component that matches the XRI-authority production, the rules defined in section 5.2 of [RFC2396] need modification because an XRI authority is considered opaque by generic URI syntax.

The following sections, therefore, define the process for resolving a relative XRI reference into a string that matches the XRI production defined in section 2.1 for all XRIs, including those relative references that would otherwise be unresolvable because they are considered opaque by [RFC2396].
Note that the colon “:” character can cause misinterpretation when used in certain relative XRIs. XRIs are identical to URIs in this respect, and the advice from [RFC2396] is equally applicable. “Authors should be aware that a path segment which contains a colon character cannot be used as the first segment of a relative URI path (e.g., ‘this:that’), because it would be mistaken for a scheme name. It is therefore necessary to precede such segments with other segments (e.g., ‘./this:that’) in order for them to be referenced as a relative path.“
2.4.1 Establishing a Base XRI

A base XRI is established according to the rules defined in section 5.1 of [RFC2396]. Using these rules, however, may require the conversion of the XRI to the fully escaped URI form described in section 2.2.3.2. In other words, there is no difference between establishing a base XRI (for a fully URI-converted XRI) and establishing the base of any generic URI.
2.4.2 Obtaining the Referenced XRI

Section 5.2 of [RFC2396] describes rules for resolving relative references to absolute forms of URIs. For XRIs matching the XRI Authority production in section 2.1.1.2, these same rules apply with the following modifications:

· In step 1, the XRI reference is parsed using an XRI aware parser such that the “authority” component is interpreted as the "authority-part" production defined in section 2.1.1 of this specification.

· Step 4 states, “If the “authority” component is defined, then the reference is a “network-path” and we skip to step 7”. For XRIs, the presence of an “authority” component does not imply that the reference is a “network-path” as defined by [RFC2396] because it may be an “XRI-authority” component. However, the instruction to skip to step 7 is still valid for XRIs. In other words, the processing instruction is correct, but the inference as to the type of reference is invalid.

· In step 4, the base XRI is parsed using an XRI-aware parser such that the “authority” component is interpreted as the “authority-part” production defined in section 2.1.1 of this specification.

· In step 7, the block that reads

if authority is defined then

 append "//" to result

 append authority to result

is replaced by

if authority is defined then

 if type-of(authority) == URI-authority

 append "//" to result

 append authority to result

It is important to note that the algorithm described in section 5.2 of [RFC2396] will generally produce incorrect results when applied to relative XRI references in which the authority component matches the XRI-authority production. This type of relative XRI reference, therefore, should only be used in contexts in which the above algorithm is known to be employed.
The following are examples of resolving relative XRI references. These examples closely follow the examples for resolving relative references in URIs in appendix C of [RFC2396]. Within an object with a well-defined base XRI of

 xri:a.b.c/d.e/f;p?q

the relative XRI would be resolved as follows:

g:h

= g:h

./g:h

= xri:a.b.c/d.e/g:h

g

= xri:a.b.c/d.e/g

./g

= xri:a.b.c/d.e/g

g/

= xri:a.b.c/d.e/g/

/g

= xri:a.b.c/g

//g

= xri://g

?y

= xri:a.b.c/d.e/?y

g?y

= xri:a.b.c/d.e/g?y

#s

= (current document)#s

g#s

= xri:a.b.c/d.e/g#s

g?y#s

= xri:a.b.c/d.e/g?y#s

;x

= xri:a.b.c/d.e/;x

g;x

= xri:a.b.c/d.e/g;x

g;x?y#s
= xri:a.b.c/d.e/g;x?y#s

.

= xri:a.b.c/d.e/

./

= xri:a.b.c/d.e/

..

= xri:a.b.c/

../

= xri:a.b.c/

../g

= xri:a.b.c/g

As with URIs, the ".." syntax cannot be used to change the authority component of an XRI.

../..

= xri:a.b.c/../

../../

= xri:a.b.c/../

../../g

= xri:a.b.c/../g
2.4.3 Leading Segments Containing “:”

[RFC2396] points out that relative URI references with an initial segment containing a “:” may be subject to two interpretations:

Authors should be aware that a path segment which contains a colon character cannot be used as the first segment of a relative URI path (e.g., "this:that"), because it would be mistaken for a scheme name.
It is therefore necessary to precede such segments with other segments (e.g., "./this:that") in order for them to be referenced as a relative path.

This rule of thumb applies to URI-escaped relative XRI references, when used in the context where a URI or URI reference is expected. In the case where relative XRI references begin with a segment containing a “:”, the relative XRI reference should be rewritten to begin with a “./”. Thus, “foo:bar” becomes “./foo:bar” and “foo.bar:baz” becomes “./foo.bar:baz”. Note that by the rules of section 2.4.2, relative XRIs transformed by inserting “./” to the beginning of the XRI reference are equal to the original XRI reference.

2.5 Normalization and Comparison

In general, the normalization and comparison rules for generic URIs apply to XRIs in fully escaped URI form. However, there are several rules which are specific to XRIs for normalization and comparison:

· The scheme component is case-insensitive for comparison for XRIs and all URIs used as cross-references.

· Comparison of authority components of two XRIs, as defined in 2.1.1, is case-insensitive for all characters in the ALPHA production.

· Two XRI authority components, as defined in 2.1.1, are equivalent if they match using a case-insensitive comparison after applying steps one and three of the process described in section 2.2.3.2.

· Two XRIs MUST be equivalent if they are character-for-character equivalent. It follows, then, that they are equivalent if they are byte-for-bye equivalent when both XRIs use the same character encoding.

· All forms of the XRI during the conversion process described in section 2.2.3.2 are equivalent (assuming the same $l and $f medata are inserted).

· Two XRIs that differ only in escaped unreserved characters are equivalent. For example, if one XRI has an unreserved character that is escaped, and another XRI differs only in that the same character is not escaped, they are considered equivalent.
· Any segment which does not begin with “.” or “:” is equivalent to a segment with a “.” inserted at the beginning of the original segment’s content. For example the segment “/foo.bar” is equivalent to “/.foo.bar”
· Each application that uses XRIs MAY define additional equivalence rules as appropriate.

· Section 6 of [RFC2396bis] offers advice on more aggressive strategies for normalization and comparison as well as best practices for canonicalization of generic URIs. Although entirely non-normative, implementers may find this information useful in developing a strategy for establishing equivalence, particularly with respect to non-XRI cross-references.
3 Resolution

3.1 Introduction to Resolution Architecture

Resolution is the process of converting an XRI into data about the resource identified by the XRI, or discovering a network endpoint in order to interact with the resource identified by the XRI.

Because XRIs will be used in a wide variety of deployments, communities, and applications, no single resolution mechanism is appropriate for all XRIs. However, in the interest of promoting interoperability and a low barrier to adoption, this specification defines a highly flexible yet simple resolution scheme that relies exclusively on HTTP (and HTTPS) for a network protocol.

It is important to note that XRIs can be "resolved" in a variety of ways. For example, they may be used as keys in a database, or used as filenames in a filesystem. The intent of this framework is to define an interoperable process for discovering and accessing resources or data about XRIs in an open system such as the Internet, where such resources or data may be distributed across a number of systems.

Policies for management of identifiers are defined on a community-by-community basis. Each community is identified via the authority portion of an XRI (which can be either a URI authority or an XRI authority as defined in section 2.1.1). When a community chooses to create a new identifier authority, it SHOULD define a policy for how identifiers under this authority are assigned and managed. Furthermore, it SHOULD define what resolution scheme should be used for resolving those identifiers.

The resolution mechanism described in this specification expects the XRI being resolved to have been converted into a URI-compatible form, following the rules in section 2.2.3.2, "Converting XRIs to URIs.”

3.1.1 Assumptions

XRI resolution makes several minimal assumptions about XRIs:

· The endpoints representing the top-level authority for any globally unique XRI are identified with the "uri-authority" or "xri-authority" part of the XRI.

· Some data corresponding to a single XRI may be retrieved or manipulated by multiple protocols at multiple endpoints.
· Each endpoint may present a different subset, type, or representation of data associated with the identified resource.
· Only absolute XRIs are resolvable. Thus, to resolve a relative XRI, it must be converted into an absolute XRI using the procedure in section 2.4
3.1.2 Phases of Resolution

The XRI resolution framework is designed to be as flexible as possible given the assumptions described above and the wide number of anticipated uses for XRIs. The resolution scheme reflects the structure of XRIs, and consists of two phases:
· Authority Resolution

· Local Access

Authority Resolution is the process of finding the endpoint or endpoints representing the authority that controls the namespace in which the XRI is defined. The result of Authority Resolution is a list of local access endpoints, each one providing “local access” service. An XRI resolver chooses one of these endpoints and then performs the local access protocol to access that endpoint.

Figure 1 demonstrates the phases of XRI resolution:

[image: image2.wmf]Authority

Endpoint

Authority

Endpoint

Local Access

Endpoint

Resolving Client

(xri:=wachob.home/foo)

1) What is the naming

authority for =wachob?

2) What is the local acess for

home (relative to =wachob)

3) What is the data associated

with =wachob.home/foo?

Authority Resolution

Local Access

Figure 1: Phases of Resolution

3.2 Naming Authority Lookup

Naming authority lookup is the process of discovering a Local Access HTTP URL that corresponds to the naming authority portion of an XRI (“authority-part” production in the BNF). Abstractly-identified naming authorities (“XRI-authority” production in the BNF) are resolved sub-segment-by-sub-segment, from left to right. Authorities identified by DNS names or IP addresses (“URI-authority” production in the BNF) are resolved by transforming the XRI to a HTTP URI and performing local access on that HTTP URI.

3.2.1 XRI Authority Lookup

3.2.1.1 Algorithm Initiation

XRI Authority Lookup is an iterative procedure that resolves the naming authority identifier from left to right. Each sub-segment is resolved in the context of the sub-segment immediately to the left of it. The first (or leftmost) sub-segment specifies the identifier community in which this naming authority exists. This identifier community is the “root” of resolution. Each identifier community provides, as part of its definition, one or more network endpoints (HTTP URLs) that answers resolution requests for identifiers in its context. These URLs are used for the first step of the “per-sub-segment” lookup algorithm described in this section.

The first sub-segment (corresponding to the identifier community) may start with a global community symbol or a cross-reference. In either case, the associated community must have published a predefined “Naming Authority Descriptor” (as specified in 3.2.1.4 below) that contains one or more HTTP (or HTTPS) URLs where resolution of the rest of the sub-segments in that identifier community begins. This Naming Authority Descriptor is known “a priori” and is part of the configuration of a resolver, not unlike the configuration of root DNS servers in a DNS resolver.

It is important to note that for global context symbols, the first sub-segment is treated as two logical sub-segments for resolution purposes. The first logical sub-segment is the global community symbol. The first node that is actually resolved (the second logical sub-segment) is the remainder of the first sub-segment beyond the global community symbol. If this second logical sub-segment doesn’t begin with a “:” or “.”, then a “.” is implied at the beginning of the second logical sub-segment. Table 1 and Table 2 demonstrate the parsing of the first sub-segment in the case of global community identifiers and cross-reference community identifiers respectively.

	XRI
	xri:@example.internal/foo

	Authority
	@example.internal

	Identifier Community
	@

	First Sub-segment Resolved
	.example

Table 1: Global Community Identifiers

	XRI
	xri:(http://www.example.com).internal/foo

	Authority
	(http://www.example.com).internal

	Identifier Community
	 (http://www.example.com)

	First Sub-segment Resolved
	.internal

Table 2: Cross-Reference Community Identifiers

3.2.1.2 Algorithm Iteration Step

Overview
After the first URL is determined from the identifier community, the resolution process proceeds to resolve the next sub-segment the right. This left-to-right, sub-segment-by-sub-segment resolution repeats until there are no more sub-segments to resolve in the XRI Authority. The resolution of each sub-segment thus occurs within the context of sub-segments that appear to the left of the sub-segment being resolved. Each context is described by a Naming Authority Descriptor (, which describes the “next step” in resolution for a given context. This Naming Authority Descriptor may contain an HTTP URL (“Next Authority URI”) that is the prefix of a URL (“Next Resolution URI”) at which the next sub-segment is resolved. Note that whenever HTTP is mentioned, HTTPS URIs are also allowed.
The Next Resolution URI is built from three parts:

· the URI extracted from the Naming Authority Descriptor corresponding to the current context,
· the separator preceding the sub-segment (“.” or “:”) and
· the sub-segment itself.
For example, when resolving the “c” sub-segment of xri:/a.b.c, if the Next Authority URI resulting from the resolution of xri:/a.b is “http://example.com/nameauthority/”, then the Next Resolution URI is the concatenation of “http://example.com/nameauthority/” with “.” And “c”: “http://example.com/nameauthority/.c”. An HTTP request is made to this URI, and the next Naming Authority Descriptor for the context “xri:/a.b.c” is retrieved.
Constructing the Next Resolution URI
The construction Next Resolution URI is more formally described in this pseudo-code:

na-uri = authority-uri

if (authrority-uri doesn’t end in “/”):

 na-uri = na-uri + “/”

if (current-sub-segment isn’t preceded with “.” or “:” separator):

 na-uri = na-uri + “.”

else:

 na-uri = na-uri + separator
na-uri = na-uri + uri-escape(sub-segment)

The URI which forms the base of the Next Resolution URI is the value of one of the URI elements from the Naming Authority Descriptor (found at XPath /NamingAuthority/NextAuthority/URI relative to the Naming Authority Descriptor). This Next Authority URI is concatenated with the separator and the URL-escaped (section 2.2.3.2) version of the sub-segment being resolved.
In the case where the Next Authority URI does not end with a “/” character, one must be appended to the Next Authority URI before proceeding.
If there is no separator character preceding the sub-segment, a “.” is used for the separator (the lack of a leading separator in a segment is simply a syntactical convenience and always is equivalent to the segment with a leading “.”).

The HTTP request
Next, an HTTP request is made with this newly constructed Next Resolution URI. Each HTTP request results in a 200 OK HTTP response. Any other response should be considered an error in the resolution process. There is no restriction on intermediate redirects or other result codes that eventually result in a 200 OK response. The content of this response contains a Naming Authority Descriptor that is associated with the context of the sub-segment being resolved.

If there are more sub-segments in the naming authority to the right of the currently resolved sub-segment, then the above URL construction and request process is repeated. If there are no more sub-segments, then the resulting context (as described by the Naming Authority Descriptor most recently retrieved) can be used for local access services.
The results of Naming Authority Resolution step
Each of these “contexts” (list of naming authority identifier sub-segments – e.g. “a”, “a.b”, “a.b.c”) might identify local access services, identify a naming authority for resolution of further sub-segments, or act an as alias for another naming authority. For example, the XRI authority identifier “*a.b.c” may be used as a standalone naming authority identifier, in which case the resulting Naming Authority Descriptor contains references to local access services. Or, “*a.b.c” may be the prefix to another Naming Authority identifier “*a.b.c.d”, in which case it (“*a.b.c”) must resolve to a Naming Authority Descriptor containing references to another naming authority resolution endpoint URL (found at XPATH /NamingAuthority/NextAuthority/URI relative to the Naming Authority Descriptor). Finally, the resulting descriptor can assert that the Naming Authority identifier “xri:*a.b.c” is an alias for the identifier “xri:1:2:3”. This would be used, for example, in mapping reassignable XRI identifiers to permanent XRI identifiers.

Thus, the result of the HTTP request corresponding to the resolution of a Naming Authority identifier sub-segment can result in a Naming Authority Descriptor containing references to both local access services and naming authority resolution services.

3.2.1.3 Examples

The following is an example of the naming authority resolution using this XRI:

xri:=wachob.home.base/foo.bar
Assume that the URL from the naming authority descriptor for the “=“ global community is http://equals.xri.com/xriresolve (found in /NamingAuthority/NextAuthority/URI of the Naming Authority Descriptor). As mentioned in 3.2.1.1, this information, which provides a starting point for resolution, is known “a priori” and is part of the configuration of the resolver.
Resolving “=wachob”

The following HTTP request is made to equals.xri.com:

GET /xriresolve/wachob HTTP/1.1

<other HTTP headers>

The following HTTP response is received from equals.xri.com:

200 OK HTTP/1.1

Content-Type: application/xrina+xml

<cache-headers>

<other HTTP headers>

<NamingAuthority xmlns=”…”>

<NextAuthority>

<URI>

xri-na http://xri.wachob.com/xriresolve/

</URI>

</NextAuthority>

<LocalAccess>…</LocalAccess>

</NamingAuthority>

Resolving “=wachob.home”

Appending the next sub-segment “home” to the URL “http://xri.wachob.com/xriresolve/” gives the URL “http://xri.wachob.com/xriresolve/home” and the following HTTP request is made to xri.wachob.com:

GET /xriresolve/home HTTP/1.1

<other HTTP headers>

The following HTTP response is received from xri.wachob.com:

200 OK HTTP/1.1

Content-Type: application/xrina+xml

<cache-headers>

<other HTTP headers>

<NamingAuthority xmlns=”…”>

<NextAuthority>

<URI>

http://xri.wachobhome.com/xriresolve/
</URI>

</NextAuthority>

<LocalAccess>…</LocalAccess>

…

</NamingAuthority>

Resolving “=wachob.home.base”

Appending the next sub-segment “base” to the URL “http://xri.wachobhome.com/xriresolve/” gives the URL “http://xri.wachobhome.com/xriresolve/base”:

GET /xriresolve/base HTTP/1.1

<other HTTP headers>

The following HTTP response is received from xri.wachobhome.com:

200 OK HTTP/1.1

Content-type: application/xrina+xml

<cache-headers>

<other HTTP headers>

<NamingAuthority xmlns=”…”>
<NextAuthority>…</NextAuthority>
<LocalAccess>

<URI>

http://xri.wachobhome.com/xri-local/

</URI>

<URI>

https://xri.wachobhome.com/xri-local/

</URI>

</LocalAccess>

…

</NamingAuthority>

The result of the final Naming Authority resolution step is a set of HTTP and HTTPS URIs that can be used for local access services.

3.2.1.4 Naming Authority Descriptor

The endpoint descriptor is an XML document with a very flexible content model. Its purpose is to associate service endpoints and alias information for the context associated with a naming authority identifier.

The format for the endpoint descriptor is specified by the XML Schema in Appendix D. The following example demonstrates the fields defined in this specification:

<NamingAuthority xmlns=”xri:$s/NamingAuthority”>
 <Resolved>.foo</Resolved>
 <NextAuthority>

 <URI>http://xri.example.com</URI>

 <URI>https://xri.example.com</URI>

 </NextAuthority>

 <LocalAccess>

 <Service>X2R</Service>

 <Type>application/rddl+xml</Type>

 <URI>http://xri.example.com</URI>

 </LocalAccess>

 <LocalAccess>

 <Service>X2R</Service>

 <Type>image/jpeg</Type>

 <URI>http://pictures.xri.example.com</URI>

 </LocalAccess>

 <Alias>xri:1.2.3</Alias>

</NamingAuthority>

All “NamingAuthority” document elements are in the namespace “xri:$s/NamingAuthority”. The following elements and attributes comprise the “NamingAuthority” document type:

/NamingAuthority
Required. The outer element of the “NamingAuthority” resolution process.

/NamingAuthority/Expires
0 or 1. The time, expressed in UTC time zone, at which this document MUST no longer be relied upon. A resolver MAY discard this document before the time indicated in this result. If the HTTP transport caching semantics specify an expiry time which is earlier than the time expressed in this attribute, then the “NamingAuthority” document MUST no longer be relied upon after the expiry time declared in the HTTP headers per section 13.2 of [RFC2616].
/NamingAuthority/Resolved

0 or 1. Expresses the XRI identifier fragment whose resolution results in this NamingAuthority document. This is usually the subsegment which was just resolved in the previous step of naming authority resolution. This field can be used in conjunction with Digital Signatures to provide secure resolution (not specified in this document). Also, this field may be useful for debugging or auditing purposes.
/NamingAuthority/NextAuthority

0 or 1. Indicates the next naming authority to visit. The sub-segment which has just been resolved specifies which “next authority” to visit. If the just-resolved sub-segment does not identify another naming authority, but rather only a namespace within the current naming authority, then the “NextAuthority” element may not be present.

/NamingAuthority/NextAuthority/URI

Required if “NextAuthority” element is present. Indicates the transport level URI where the next naming authority can be contacted.

/NamingAuthority/LocalAccess

0 or more. Indicates that this last sub-segment specifies a naming authority where local access service is available.

/NamingAuthority/LocalAccess/Service
0 or 1. Indicates the type of local access service. Currently, there is only one service defined: X2R. An X2R service converts the XRI into a resource associated with that resource. No more specific semantics are defined. If this element is absent, then the service associated with this Local Access service endpoint is X2R.
/NamingAuthority/LocalAccess/Type
0 or more. The media type of content available at this service. If this is not present, then no assumption can be made about the type of data available at this endpoint. The content of this attribute must be of the form of a media type as defined in [RFC2046]. This element may appear multiple times to indicate multiple media types available through this local service.

/NamingAuthority/LocalAccess/URI

1 or more. Required if “LocalAccess” element is present. Indicates the transport level URI where the next naming authority can be contacted.

/NamingAuthority/Alias and /NamingAuthority/NextAuthority/Alias
0 or more. A name that the Naming Authority specified by the resolution step may also be known as. The Alias is an absolute XRI.

Alias may be used, for example, to assert that a naming authority identified with non-persistent identifiers may also be known by an identifier consisting entirely of “persistent sub-segments”. Alias elements may also appear within /NamingAuthority/NextAuthority/Alias to express that a particular authority may be known by another name than the one which is being resolved.
This alias may also be useful in querying or populating a cache.
“NamingAuthority” documents have an “open schema” allowing other elements and attributes from other namespaces to be added throughout. This is a point of extensibility and should be used to deploy new local access or naming authority resolution schemes.
Another possible use of this extensibility is the attachment of XML Digital Signatures and SAML assertions to support “secure resolution”. This proposal does not specify such security features, but simply acknowledges their importance and accommodates their future specification within the flexible Naming Authority Descriptor document.

3.2.2 DNS-Specified and IP-Address-Specified Authorities

DNS-specified and IP-Address-specified authorities consist of a DNS name or IP address which specifies the location of the endpoint with which to perform local access. The process for converting XRIs with DNS-specified or IP-Address-specified authorities into local access URLs is extremely simple. First, the XRI must be converted into URI-escaped form. Then, the scheme part is translated from “xri:” to “http:” and an HTTP request is performed on the resulting URL, as described in section 3.3 “Local Access” below.

For example, to the XRI “xri://www.example.com/foo.bar” is converted to the HTTP URL “http://www.example.com/foo.bar”. Use of DNS-specified and IP-Address-specified authorities are allowed primarily as a transition mechanism to the use of XRIs from an HTTP-only infrastructure and are not encouraged for new deployments of XRI identifiers.

3.2.3 User Relative XRIs

XRIs beginning with the user-relative community symbol (“*”) are a special case for resolution. The authority for these identifiers is defined by the user of the XRI, and not uniquely specified in the XRI itself. Thus, these XRIs are not resolvable without the establishment of an authority for the XRI from some source other than the characters in the XRI.

XRIs beginning with the user-relative community identifiers MUST be transformed into XRIs with an explicit Naming Authority identifier (other than one based on the user relative community) before they can be resolved using the resolution mechanisms defined in this specification.

Note that in most cases, this transformation is simply the replacement of the “*” character with a prefix corresponding to an Naming Authority identifier. For example, if a client is configured with a default community of “@employer”, then the XRI “xri:*workstation/identifier” would be converted into “xri:@employer.workstation/identifier”.

3.3 Local Access

Local access is the process of interacting with a representation or networked resource corresponding to an XRI. This specification specifies an HTTP local access protocol.Other local access protocols could be specified in the future.

The HTTP local access specification in this document does not specify the semantics of the local access interaction, nor the form of the local access requests. The only semantics defined are those in [RFC2616]. Special attention should be paid to the semantics of the four main HTTP verbs: GET, PUT, POST, and DELETE. For example, clients performing local access typically would use GET when wishing to retrieve representations of a resource on the network. This specification does not impose particular semantics beyond what is defined in HTTP 1.1, but users of this specification are encouraged to review the [REST] architecture when building applications using XRIs. Local Access, however, is not limited to the REST model of interaction. For example, HTTP local access could be leveraged for the delivery of SOAP messages over HTTP POST, or simply through the use of the GET HTTP verb as a generic read-only resolution infrastructure.
The HTTP local access binding defined in this section is very flexible and may be used for a variety of resources. In fact, the type of resource represented by an XRI is knowable only through the context in which the XRI was originally used (e.g. an XML document) or is discovered through use of the HTTP local access protocol (e.g. through the HTTP Content-Type header). The HTTP protocol defined here makes no assumptions about the type of resource identified by the XRI which has been resolved.
This section (section 3.3) applies to all local access of XRIs, but section 3.3.1 applies to XRIs with XRI Authority naming authorities–the formation of the URL for local access for DNS-specified and IP-Address-specified XRIs is described in section 3.2.2.

3.3.1 Constructing a Local Access HTTP(S) URL

The URL for Local Access is constructed simply by concatenating the Local Access URI from the Naming Authority Descriptor (corresponding to the Naming Authority of the XRI) with the local part of the XRI. Specifically, the URI from the Naming Authority Descriptor (the element identified with the relative XPATH /NamingAuthority/LocalAccess/URI) is concantenated with the url-escaped (section 2.2.3.2) version of the local part of the XRI (relative-path in the BNF), which excludes the leading “/” of the local-part. If the LocalAccess URI does not terminate in a “/”, one should be inserted before the relative-path. The actual URL to which we perform an HTTP request is the textual concatenation of the local access URL from the output of the result of Naming Authority resolution and the fully-escaped (i.e., URI-compatible) version of the local part of the XRI to the URL being resolved.

The following pseudocode describes the process for creating the actual local access URL to which a Local Access HTTP request is made:
actual-la-url = localaccess-uri

if (localaccess-uri doesn’t end in “/”):

actual-la-url=la-url + “/”

actual-la-url = la-url + uri-escape(relative-path)
The verb that is to be used in the resulting HTTP request may be any of the verbs defined in [RFC2616], though not all verbs may be supported at every endpoint. All local access endpoints SHOULD support at least the GET verb and return either a representation of the identified resource or metadata about the resource. The full suite of HTTP content negotiation features is available to clients when performing local access.
For example, if the local access service URL is “http://xri.wachobhome.com/xri-local“, then the following local access HTTP request for “xri:=wachob.home.base/foo.bar” could be made to xri.wachobhome.com:
GET /xri-local/foo.bar HTTP/1.1

<other HTTP headers>

200 OK HTTP/1.1

<cache-headers>

<content of representation>

3.4 HTTP Headers

3.4.1 Caching

The full caching capabilities of HTTP should be leveraged during both Naming Authority Resolution and Local Access. Specifically, implementations of XRI resolution SHOULD implement the caching model described section 13 of [RFC2616]. The “Expiration Model” of section 13.2 SHOULD be used, as this requires the fewest round trip network connections.

All servers giving naming authority lookup responses SHOULD send the Cache-Control or Expires headers per section 13.2 of [RFC2616], unless there are security or policy reasons not to.

3.4.2 Location

During naming authority resolution, “Location” headers may be present per the [RFC2616] specification (i.e., during 3XX redirects). Redirects SHOULD be made cacheable through appropriate HTTP headers.

During the local access phase, redirects may be present and the “Location” may contain an HTTP URI or an XRI URI. This comprises an “aliasing” facility allowing one XRI to resolve into another during Local Access. If the local access server is aware of the HTTP location where the XRI may be accessed, it can provide a “Location” header containing an HTTP URI. In this case, it SHOULD provide an “X-XRI-Canonical header” (see below) to describe the XRI to which the redirection is targeting. If the local access server knows only of the target XRI, then it MUST return a redirection header (3XX code) with the “Location” field containing an XRI.

3.4.3 Content-Location

“Content-Location” may be used during local access where the resource being accessed is an “attribute” or “view” of another resource. This usually would occur in the case where metadata is being accessed using a trailing cross reference to an XRI value under the “$t” namespace (see Appendix E). Such a “Content-Location” header would specify where the resource itself may be accessible (rather than the metadata). This is not required and MUST NOT be required by resolving clients for proper operation. The content-location SHOULD be an HTTP URI if the local access server is aware of the HTTP location, otherwise it MAY be a XRI.

3.4.4 Content-Type

Content-type is required in the HTTP response in naming authority resolution that returns a Naming Authority Descriptor and for the HTTP responses in local-access.

The content-type header in the 200 responses in naming authority resolution for each sub-segment MUST contain the value “application/xrina+xml”, specifying that the content is a naming authority descriptor.

In the local access, clients and servers may negotiate content type using standard HTTP content negotiation features. Whether or not this feature is used, however, the server MUST respond with an appropriate media-type in the content-type header.

3.4.5 X-XRI-Canonical

This is a header that is present only in HTTP redirects from local access servers. This header notifies a resolving client that the redirect is occurring because the original XRI is an “alias” for another. The “other” XRI (fully escaped URI form) is the value of this header. This header MAY be present even when the Location: header is present and contains an XRI. This header SHOULD be present when the Location: header is present and contains a HTTP or other URI.

Form:

X-XRI-Canonical: <URI-escaped XRI>

3.5 Other HTTP Features

HTTP provides a number of other features including transfer-coding, proxying, validation-model caching, etc. All of these features may be used so far as they do not conflict with the required uses of HTTP as described in this document.

3.6 Caching and Efficiency

Resolution clients are encouraged to perform caching “above” the HTTP level. To do so, however, resolution clients SHOULD be conservative with caching expiration semantics, including cache expiration dates. This implies that in a series of HTTP redirects, for example, the results of the entire process should only be cached as long as the shortest period of time allowed by any of the intermediate HTTP responses. Because not all HTTP client libraries expose caching expiration to applications, Naming Authorities and Local Access servers SHOULD NOT use cacheable redirects that use expiration times which are relatively short compared to the expiration times of other HTTP responses in the resolution or local access chain of HTTP request/responses. In general, all XRI deployments should be mindful of limitations in current HTTP clients and proxies.

For Naming Authority Descriptors, expiration time may also be shortened by the Expiration time in the Naming Authority Descriptor at /NamingAuthority/Expires (if present). That is, if the expiration time in /NamingAuthority/Expires is sooner than the expiration time calculated from the HTTP caching semantics, then the Naming Authority Descriptor should be discarded before the expiration time in /NamingAuthority/Expires.
It is expected that between application level and HTTP-level caching, there will be minimal overhead in resolution due to the design of the resolution process. In particular, because each sub-segment of an abstractly-identified naming authority identifier is resolved separately, each step of that resolution is a completely independent, cacheable HTTP-request. Thus, resolution of “top-level” (leftmost) sub-segments, because they are common to more identifiers, will typically result in a greater number of cache hits than resolution of sub-segments farther to the right.

3.7 Points of Extensibility

The XRI resolution scheme described here is intended to be extremely flexible by leveraging extensible mechanisms such as HTTP and XML. Specifically, when providing new features or extending the XRI resolution mechanisms, changes or additions can be made using the following points of extensibility:

· HTTP negotiation of content types, language, encoding, etc

· Use of HTTP verbs such as POST, PUT and DELETE during local access

· Use of HTTP redirects (3XX) or other response codes during naming authority resolution or local access

· Insertion of new elements or attributes in the Naming Authority Descriptor

· Naming conventions on XRIs (see Appendix E)

4 Security and Data Protection

4.1 XRI Usage in Legacy Infrastructure

Where XRIs are used within the Internet and other computing infrastructure, the security and data protection considerations relating to XRIs are similar to those of other URI schemes. In this context the material in section 7, Security Considerations, of [RFC2396bis] is informative. It includes a discussion of the following topics:

· Reliability and Consistency

· Malicious Construction

· Rare IP Address Formats

· Sensitive Information

· Semantic Attacks

This material notes that “a URI does not in itself pose a direct security threat.” This statement remains true only for the use of XRIs in legacy environments, and may not be accurate as new infrastructure evolves for resolution or that builds on the extensibility of XRI architecture. Such applications of XRIs must be developed with independent security reviews for the use of XRI in the specific scenario in which they are used. .
4.2 Secure Resolution

The resolution mechanisms described in section 3 are not intrinsically trustworthy. It is expected that, in practice, some combination of DNSSEC, SSL and other existing technologies will be employed to increase the security of the resolution process. Such considerations are outside the scope of this document, although follow-on work may be done to define best practices and facilitate inoperability.

4.3 XRI Usage in Evolving Infrastructure

As XRIs are adopted as abstract identifiers, it is anticipated that new services will be developed that take advantage of their extensibility. In particular, XRIs may enable new solutions to security and data protection problems that are not possible using existing URI schemes.

For example, XRI cross-reference syntax permits the inclusion of identifier metadata such as an encrypted or integrity-checked path, query, or fragment. Cross-references can also be used to indicate methods of obfuscating, proxying, or redirecting resolution to prevent the exposure of private or sensitive data. These capabilities may enable new security and data protection features at the fundamental level of resource identifiers.

A complete discussion of this topic is out of scope for this document. However, as a consequence of the extensibility of XRIs, it is not possible to make definitive statements regarding all security and data protection considerations relating to XRIs.

5 References

5.1 Normative

[RFC2396]
T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifiers (URI): Generic Syntax, http://www.ietf.org/rfc/rfc2396.txt, RFC 2396, August 1998.

[XMLSchema2]
 P. Biron, A. Malhotra, XML Schema Part 2: Datatypes W3C Recommendation, http://www.w3.org/TR/xmlschema-2/, May 2001.
[RFC2046]
N. Borenstein, N. Freed, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, http://www.ietf.org/rfc/rfc2046.txt, RFC 2046, November 1996.

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, RFC 2119, March 1997.

[XML]

T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, Extensible Markup Language (XML) 1.0 (Second Edition) W3C Recommendation, http://www.w3.org/TR/REC-xml, October 2000.

[RFC2234]
D. H. Crocker and P. Overell, Augmented BNF for Syntax Specifications: ABNF, http://www.ietf.org/rfc/rfc2234.txt, RFC 2234, November 1997.

[UTR15]
M. Davis, M. Duerst, Unicode Normalization Forms, http://www.unicode.org/unicode/reports/tr15/tr15-23.html, April 17, 2003.

[RFC3490]
P. Faltstrom, P. Hoffman, A. Costello, Internationalizing Domain Names in Applications (IDNA), http://www.ietf.org/rfc/rfc3490, RFC 3490, March 2003.

[RFC2616]
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Hypertext Transfer Protocol -- HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt, RFC 2616, June 1999.

[RFC2732]
R. Hinden, B. Carpenter, L. Masinter, Format for Literal IPv6 Addresses in URL's, http://www.ietf.org/rfc/rfc2732.txt, RFC 2732, December, 1999.

[RFC2718]
L. Masinter, H. Alvestrand, D. Zigmond, R. Petke, Guidelines for New URL Schemes, http://www.ietf.org/rfc/rfc2718.txt, RFC 2718, November 1999.

[RFC3305]
M. Mealing, R. Denenberg, Uniform Resource Identifiers (URIs), URLs, and Uniform Resource Names (URNs): Clarifications and Recommendations, http://www.ietf.org/rfc/rfc3305.txt, RFC 3305, August 2002.

[RFC2141]
R. Moats, URN Syntax, http://www.ietf.org/rfc/rfc2141.txt, IETF RFC 2141, May 1997.

[UML]
Object Management Group, Unified Modeling Language (UML) Version 1.5, http://www.omg.org/technology/documents/formal/uml.htm, March 1, 2003.

[RFC1737]
K. Sollins, L. Masinter, Functional Requirements for Uniform Resource Names, http://www.ietf.org/rfc/rfc1737.txt, RFC 1737, December 1994.

[Unicode]
The Unicode Consortium, The Unicode Standard, Version v3.0, Addison-Wesley Pub Co; ISBN: 0201616335, February, 2000.
5.2 Informative

[IRI]

M. Duerst, M. Suignard, Internationalized Resource Identifiers (IRIs), http://www.ietf.org/internet-drafts/draft-duerst-iri-04.txt, Work-In-Progress, June 2003.

[RFC2396bis]
R. Fielding, Uniform Resource Identifiers (URI): Generic Syntax, Internet Draft draft-fielding-uri-rfc2396bis-03, http://www.apache.org/~fielding/uri/rev-2002/rfc2396bis.html, Work-In-Progress, June 2003.

[XRIReqs]
G. Wachob, D. Reed, M. Le Maitre, D. McAlpin, D. McPherson, Extensible Resource Identifier (XRI) Requirements and Glossary v1.0, http://www.oasis-open.org/apps/org/workgroup/xri/download.php/2523/xri-requirements-and-glossary-v1.0.doc, June 2003.
[REST]
http://internet.conveyor.com/RESTwiki/moin.cgi/FrontPage

Appendix A. Collected ABNF for XRI

This section contains the complete ABNF for XRI, which includes the complete ABNF for URI from [RFC2396bis] since XRI syntax is a superset. XRI productions use green shading and URI productions yellow shading. A valid XRI MUST conform to this ABNF.

abs-path
= "/" path-segments

alphanum
= ALPHA / DIGIT

authority
= [userinfo "@"] host [":" port]

authority-part
= URI-authority / XRI-authority

dec-octet
= DIGIT

; 0-9

/ %x31-39 DIGIT

; 10-99

/ "1" 2DIGIT

; 100-199

/ "2" %x30-34 DIGIT

; 200-249

/ "25" %x30-35

; 250-255

delims
= "<" / ">" / "%" / DQUOTE

domainlabel
= alphanum [0*61(alphanum / "-") alphanum]

escaped
= "%" HEXDIG HEXDIG

excluded
= invisible / delims / unwise

fragment
= *(pchar / "/" / "?")

gcs-char
= "+" / "=" / "@" / "$" / "*"

global-path
= ["!"] authority-part [local-path]

global-xri
= global-path ["?" xri-query] ["#" xri-fragment]

h4
= 1*4HEXDIG

hier-part
= net-path / abs-path / rel-path

host
= [hostname / IPv4address / IPv6reference]

hostname
= idomainlabel qualified

 idomainlabel = 1*ucschar

invisible
= CTL / SP / %x80-FF

IPv4address
= dec-octet "." dec-octet "." dec-octet "." dec-octet

IPv6address =
6(h4 ":") ls32

/ "::" 5(h4 ":")

ls32

/ [h4] "::" 4(h4 ":")
ls32

/ [*1(h4 ":") h4] "::" 3(h4 ":")
ls32

/ [*2(h4 ":") h4] "::" 2(h4 ":")
ls32

/ [*3(h4 ":") h4] "::" h4 ":"
ls32

/ [*4(h4 ":") h4] "::"
ls32

/ [*5(h4 ":") h4] "::"
h4

/ [*6(h4 ":") h4] "::"

IPv6reference
= "[" IPv6address "]"

local-path
= "/" relative-path

ls32
= (h4 ":" h4) / IPv4address

; least-significant 32 bits of address

mark
= "-" / "_" / "." / "!" / "~" / "*" / "'" / "(" / ")"

net-path
= "//" authority [abs-path]

path-segments
= segment *("/" segment)

pchar
= unreserved / escaped / ";" /

":" / "@" / "&" / "=" / "+" / "$" / ","

port
= *DIGIT

qualified
= *("." idomainlabel) ["."]

query
= *(pchar / "/" / "?")

relative-path
= *(["."] "./") xri-segments

rel-path
= path-segments

reserved
= "/" / "?" / "#" / "[" / "]" / ";" /

":" / "@" / "&" / "=" / "+" / "$" / ","

scheme
= ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")

segment
= *pchar

sub-segment
= *xri-pchar / xref

 ucschar = %xA0-D7FF / %xF900-FDCF / %xFDF0-FFEF /

 %x10000-1FFFD / %x20000-2FFFD / %x30000-3FFFD /

 %x40000-4FFFD / %x50000-5FFFD / %x60000-6FFFD /

 %x70000-7FFFD / %x80000-8FFFD / %x90000-9FFFD /

 %xA0000-AFFFD / %xB0000-BFFFD / %xC0000-CFFFD /

 %xD0000-DFFFD / %xE1000-EFFFD

unreserved
= ALPHA / DIGIT / mark

unwise
= "{" / "}" / "|" / "\" / "^" / "`"

URI
= scheme ":" hier-part ["?" query] ["#" fragment]

URI-authority
= "//" [userinfo "@"] host [":" port]

uric
= reserved / unreserved / escaped

userinfo
= *(unreserved / escaped / ";" /

":" / "&" / "=" / "+" / "$" / ",")

xref
= "(" (global-xri / URI) ")"

xref-authority
= xref ("." sub-segment / ":" sub-segment) *("."

 sub-segment / ":" sub-segment)

XRI
= "xri:" xri-value

XRI-authority
= (gcs-char xri-segment) / xref-segment

xri-characters
= xri-reserved / xri-unreserved / escaped

xri-fragment
= [xref] * (pchar / "/" / "?")

xri-mark
= "-" / "_" / "~" / "'"

xri-path
= global-path / local-path / relative-path

xri-pchar
= xri-unreserved / escaped / ";" / "!" / "*"

"@" / "&" / "=" / "+" / "$" / ","

xri-query
= [xref] * (pchar / "/" / "?")

xri-reserved
= "/" / "?" / "#" / "[" / "]" / "(" / ")" / ";" / ":" /

"," / "." / "&" / "@" / "=" / "+" / "*" / "$" / "!"

xri-segment
= (["."] sub-segment / ":" sub-segment)

*("." sub-segment / ":" sub-segment)

xri-segments
= xri-segment *("/" xri-segment)

xri-unreserved
= ALPHA / DIGIT / ucschar / xri-mark

xri-value
= [xri-path] ["?" xri-query] ["#" xri-fragment]

Appendix B. Special Identifiers Assigned by the XRI Specification

As defined in section 2.1.1.2.1, Global Context Symbols (GCS), the GCS character "$" is reserved for identifiers for which the XRI specification is the authority. The purpose of this special set is to define metadata that is specific to identifiers and the act of identification (resolution). Establishing these identifiers at the level of the XRI specification enables interoperability of this metadata among XRI implementations. Specifically this includes:

· Human-readable metadata that allows free text comments to be embedded in an XRI.

· Versioning metadata that identifies the syntax of a version identifier.

· Linquistic metadata that identifies the language or font of an internationalized identifier.

· Internationalization encoding metadata that identifies the level of encoding of an XRI. (See section [ref I18N section].

· Query metadata that identifies the syntax of a query string.

[DSR: I ran out of time to complete this section by turning the portion below into a 3-column table: Identifier, Identifer Purpose, Comments and Requirements. I also intend to prefix this with a set of requirements for the $ namespace as a whole, include terseness, the use of URI-legal chars, and the use of all-lowercase.]

$!

= non-resolvable free text human comment

$v

= version (default is standard xri-segment syntax)

$v.d

= version in XML datetime format

$l

= language (when necessary for disambiguation of internationalized XRIs)

$f

= font (when necessary for disambiguation of internationalized XRIs)

$i

= internationalization encoding (when necessary for equivalence)

$q

= query (default is standard xri-segment syntax)

$q.xpath
= query in XPath syntax

Note that like all authority segments, a slash delimits the end of the segment.

[DSR note: should also discuss the use of cross-references using "+" syntax for common names.]

Appendix C. Transforming HTTP URIs to XRIs

[This section should discuss:

a) relationship of HTTP URIs and XRIs (e.g., answer the questions brought up on the list), and

b) specify the non-normative rules required to transform an HTTP URI into a legal XRI.]

Appendix D. XML Schema for XRI Naming Authority Descriptor

<xs:schema targetNamespace="xri:$s/NamingAuthority" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="xri:$s/NamingAuthority" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:complexType name="NamingAuthorityType">
 <xs:sequence>
 <xs:element name="Resolved" type="ResolvedType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="Expires" type="ExpiresType" minOccurs="0"/>
 <xs:element name="NextAuthority" type="NextAuthorityType" minOccurs="0"/>
 <xs:element name="LocalAccess" type="LocalAccessType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="Alias" type="AliasType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>
 <xs:complexType name="NextAuthorityType">
 <xs:sequence>
 <xs:element name="URI" type="URIType" maxOccurs="unbounded"/>
 <xs:element name="Alias" type="AliasType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>
 <xs:complexType name="LocalAccessType">
 <xs:sequence>
 <xs:element name="Service" type="ServiceType" minOccurs="0"/>
 <xs:element name="Type" type="TypeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="URI" type="URIType" maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>
 <xs:element name="NamingAuthority" type="NamingAuthorityType"/>
 <xs:complexType name="ResolvedType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="URIType">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="ExpiresType">
 <xs:simpleContent>
 <xs:extension base="xs:dateTime">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="ServiceType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="TypeType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="AliasType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

Appendix E. Using Cross References to Specify Data Types During Local Access (Non-normative)

The full power of the extensibility of XRI’s can be leveraged for selecting the type of data associated with an XRI during local access. This is done simply by appending a cross reference under the “$t” namespace to the XRI during local access. XRI’s in the “$t” namespace are intended to describe data-types. While this specification does not enumerate such types, future specifications may do so.

As an example, the cross-reference “$t/RDDL” could specify that the resource retrieved is a RDDL document describing the resource. Assume the local access URL is “http://xri.wachobhome.com/xri-local/”, and the local part of the XRI is “foo.bar”. The local access URL would be the concatenation of “http://xri.wachobhome.com/xri-local” and the URI-converted (per section 2.2.3.2) and URL-escaped version of “foo.bar/($t/RDDL)”. This would result in the following HTTP request to “xri.wachobhome.com”:

GET /xri-local/foo.bar/%28$t%2FRDDL%29 HTTP/1.1

<other HTTP headers>

The resulting HTTP response would be:

200 OK HTTP/1.1

<cache-headers>

<other HTTP headers>

<content of representation of RDDL related to xri:=Wachob.home.base/foo.bar>

This use of XRIs is not required, but suggested as a convention for local access. Further documents may formally describe such conventions, but the local access protocol is not affected by such use of XRIs and cross-references.
Appendix F. Acknowledgments

The following individuals were members of the committee during the development of this specification:

· Numerous people

In addition, the following people made contributions to this specification:

· Other people

Appendix G. Revision History

[This appendix should be removed for specifications that are at OASIS Standard level.]

	Rev
	Date
	By Whom
	What

	wd-01
	2003-06-24
	Drummond Reed
	Initial version to review structure and section 1 with other editors

	wd-02
	2003-06-25
	Drummond Reed
	Reorganized overall structure and drafted first portion of section 2

	wd-03
	2003-06-30
	Drummond Reed
	Reorganized level two headings; edited section 1; drafted all ABNF portions of section 2; added collected ABNF to Appendix A; added Appendix B with initial $ identifiers; added Appendix C.

	wd-04
	2003-07-02
	Dave McAlpin
	Editorial changes; new text in 2.2.3.2, 2.4, 2.4.*, 2.5, 2.5.*, 4.*

	wd-05
	2003-07-03
	Dave McAlpin
	Editorial changes; added resolution text (section 3)

	wd-06
	2003-07-03
	Dave McAlpin
	Minor edits; removed inline notes and created issues section as Appendix G.

	wd-07
	2003-07-24
	Dave McAlpin
	Internationalization. Major revisions to 2.2 – 2.5. Harmonization of section 3.

	wd-08
	2003-09-30
	Gabe Wachob
	New resolution section, addressed many issues

	wd-09
	2003-10-28
	Gabe Wachob, Dave McAlpin
	Revised resolution section to be more comprehensible, updated NamingAuthority document definition, added section 2.4.3, changed language on 2.2.3.2 re: $l and $f equivalence rules (some changes throughout), added one equivalence rule to section 2.5, many small editorial changes

Appendix H. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix I. Issues

	Issue
	Section
	Status

	Need to remove this section.
	Appendix G
	Open

	Need to add link to XRI Primer in Abstract when it exists
	Abstract
	Open

	Need to add link to errata page in the Status section
	Status
	Open

	Make sure internationalization text satisfies the HFI internationalization requirement or note that it’s not supported in the current spec.
	1.2.3
	Addressed

	Definition for concrete identifier is unclear. An HTTP URI resolves to an IP address, an IP address resolves to a MAC address, etc. Why aren’t they abstract by this definition?
	1.3.3
	Addressed

	Definition of abstract identifier may need to be revised to be consistent with clarified definition of concrete identifier.
	1.3.3
	Addressed

	Definition of non-resolvable identifier raised this question, “In my mind, xri:!@IETF/rfc.2396 is non-resolvable not because there’s no data and/or metadata about it but because it represents the abstract notion of the RFC rather than a particular digital representation of the text. Does this idea match the definition of non-resolvable identifier?”
	1.3.3
	Addressed

	Need text for Character Encoding and Internationalization
	2.3
	Addressed

	Relative resolution is broken by the ! (non-resolvable) symbol. Need to figure out how broken it is and how to fix.
	2.4
	Addressed

	Need text for Internationalized XRI Equivalence
	2.5.3
	Addressed

	Probably need to rename “THTTP Local Access Binding” from thttp to something XRI specific, since its not really RFC2169 compliant
	Old 3.3.5.1
	Retracted

	Need text for Privacy Considerations.
	4.3
	Addressed

	References to RFC2277 and Unicode aren’t used. If they aren’t needed by internationalization text, they should be removed.
	5.1
	Addressed

	Need to discuss the vocabulary of the $ namespace in appendix B. The list there is just the current candidates. They should be approved or removed from the spec.
	Appendix B
	Open

	Appendix C “Transforming HTTP URIs to XRIs” needs text
	Appendix C
	Open

	Appendix D “Acknowledgements” needs to be filled out with the current membership list.
	Appendix D
	Open

	Resolution section needs thorough review
	Old 3
	Retracted

	Need to review BNF for completeness and correctness (i.e. need to prove the grammar)
	Appendix A
	Open

	Need a section similar to Appendix B of RFC2396 where we provide tools and guidance for parsing XRIs
	None
	Open

	Security section should comment on lack of secure resolution.
	4
	Addressed

	Hyperlinks in doc aren’t all enabled. Need to make a pass through the doc and correct links to references and other sections of this document
	All
	Addressed

	Need to review use of normative keywords (“MUST”, “SHOULD”, etc) for consistency and correctness.
	All
	Open

	There’s a possible terminology issue with section 4.3 “Privacy Considerations”. In Europe, “data protection” is the code-word for “privacy”. Since we already have the section title as Security and Data Protection, a separate section on Privacy Considerations appears redundant.
	4.3
	Addressed

	Examples and tables don’t have or have lost captions
	Old section 3
	Retracted

	Clear up the intent of having multiple resolution mechanisms
	Old section 3
	Retracted

	Mention the fact that resolution is currently only defined on URI-legal character strings, and confirm that this is a reasonable approach.
	Old section 3
	Retracted

	Conversion of SRV records to Authority Descriptors needs fleshing out
	Old section 3
	Retracted

	Use of IP addresses as Authority identifiers needs fleshing out
	Old section 3
	Retracted

	Step 2 of section 2.2.3.2, combined with the last paragraph of that section implies that font and language tags are irrelevant for establishing equivalence. Are we ok with this?
	2.2.3.2
	Addressed (see change log)

	Talk about equivalence with segments not starting with a “.” Or “:” (ie implied “.”)
	
	Addressed

	The “application/xrina+xml” media type should be registered via an IETF process.
	3
	Open

	Revisit the list of normative and informative specs given the changes to resolution
	5
	Addressed

	Change all the examples to refer to example.com or some other identifier which will never be used in the future
	
	Open

	Finish XML Schema for XRI Naming Authority
	Appendix D
	Addressed

	Describe and come up with convention for including the XPATH references
	
	Resolved

	Review first paragraph regarding statements about anyURI
	1.1
	Open

	Comment about UML confusing
	1.2.1
	Open

	Comment about XML extensibility
	1.2.8
	Open

	Add comments specific to Internationalization?
	1.3.3
	Open

	Address comment about sounding inconsistent (also comment about “directed acyclic graph”, comment about unclear use of word “backpointer”), comment about “is being resolved” as context
	1.3.3
	Open

	Consistency about using “?” vs (“?”) (ie symbols within quotes vs. symbols within parens and quotes)
	First mentioned in 2.1.2
	Open

	Be more descriptive about persistent vs. reassignable
	2.1.2
	Open

	Comments about objection to last paragraph of 2.1.2
	2.1.2
	Open

	Conclude open issue about illegal ASCII sequences
	2.2.5
	Open

	Consistency of references (e.g. [SPEC] vs “foo bah doo” [SPEC] vs. ([SPEC])
	First mentioned in 1.2.1
	Open

�PAGE \# "'Page: '#'�'" �Page: 1���I’ve noticed that parts of the document use Helvetica and other parts use Arial. We should settle on one font and stick with it.

�PAGE \# "'Page: '#'�'" �Page: 4���American English grammar puts periods and commas inside the quoted material and other punctuation marks outside unless they are part of the quoted text. Just thought I’d raise the issue. We can ignore it if everyone wants since the rest of the document doesn’t use this practice.

�PAGE \# "'Page: '#'�'" �Page: 6���There are 3 styles of references in the doc that I have noticed, sometimes the text refers directly to the reference (“shared by [RFC2396bis]”), sometimes the reference supports the text (“’…Clarifications and Recommendations’ [RFC3305]”), and this one (“(see [UML])”). We should probably pick a standard way to use references and stick with it.

�PAGE \# "'Page: '#'�'" �Page: 6���My preference would be to either remove the UML-related text altogether or to drop the UML language and have a sentence or two about what is really meant by “UML-describable associations.”

�PAGE \# "'Page: '#'�'" �Page: 8���Is this term in common use? IRI defines it, but should we either import that definition or say “character set” instead?

�PAGE \# "'Page: '#'�'" �Page: 8���“Directed acyclic graph” isn’t helpful at all. I’m assuming that this definition is trying to describe a community of naming authorities. Perhaps text in that vein would work – especially since it isn’t clear at all that a resource could be a naming authority.

�PAGE \# "'Page: '#'�'" �Page: 9���I find this definition very confusing. I agree that the term “backpointer” doesn’t help to clarify.

�PAGE \# "'Page: '#'�'" �Page: 12���It’s a little bit confusing that the acronym “gcs” refers to the plural – global context symbols. I’d prefer “GCS” to refer to “Global Context Symbol” and the plural should be “GCSs.”

�PAGE \# "'Page: '#'�'" �Page: 23���Should these paragraphs be turned into bullet points?

�PAGE \# "'Page: '#'�'" �Page: 31���Should this really be capitalized? (ditto on following case as well).

�PAGE \# "'Page: '#'�'" �Page: 32���Make a cross-reference like the other citations.

�PAGE \# "'Page: '#'�'" �Page: 35���Need to pick a style for punctuation and quotes. This is my preferred style, but not what the bulk of the spec currently uses.

�PAGE \# "'Page: '#'�'" �Page: 35���I don’t follow the logic here. I also think that the use of the term “legacy” here could be taken poorly.

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 1
2
wd-xri-specification-09

8 October 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 9 of 51

_1120305550.vsd

