
[image: image1.png]OASIS)

Extensible Resource Identifier (XRI) Resolution V2.0
Working Draft 10 ED Draft 06, 22 February 2006
Document identifier:

xri-resolution-V2.0-wd-10-ed-06
Location:

"

http://docs.oasis-open.org/xri/xri/V2.0

Editors:

Gabe Wachob, Visa International <gwachob@visa.com>

Drummond Reed, Cordance <drummond.reed@cordance.net>
Les Chasen, NeuStar <les.chasen@neustar.biz>

William Tan, NeuStar <william.tan@neustar.biz>

Steve Churchill, XDI.ORG <steven.churchill@xdi.org>

Contributors:

Dave McAlpin, Epok <dave.mcalpin@epok.net>
Chetan Sabnis, Epok <chetan.sabnis@epok.net>

Peter Davis, Neustar <peter.davis@neustar.biz>
Victor Grey, PlaNetwork <victor.grey@planetwork.org>

Mike Lindelsee, Visa International <mlindels@visa.com>

Abstract:

This document defines both a standard and a trusted HTTP-based resolution mechanism for Extensible Resource Identifiers (XRIs) as defined by Extensible Resource Identifier (XRI) Syntax V2.0 [XRISyntax] or higher. For the set of XRIs defined to provide metadata about other XRIs, see Extensible Resource Identifier (XRI) Metadata V2.0 [XRIMetadata]. For a basic introduction to XRIs, see the non-normative Introduction to XRIs [XRIIntro]. For a detailed guide to XRI implementation, see the non-normative XRI Implementor's Guide [XRIGuide].

Status:

This document was last revised or approved by the XRI Technical Committee on the above date. The level of approval is also listed above. Check the current location noted above for possible later revisions of this document. This document is updated periodically on no particular schedule.

Technical Committee members should send comments on this specification to the Technical Committee's email list. Others should send comments to the Technical Committee by using the "Send A Comment" button on the Technical Committee's web page at http://www.oasis-open.org/committees/xri.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/xri/ipr.php.

The non-normative errata page for this specification is located at http://www.oasis-open.org/committees/xri.
Table of Contents

51
Introduction

51.1 XRI Resolution

51.2 Structure of this Specification

51.3 The XRI Implementor's Guide

61.4 Terminology and Notation

72
Namespaces

72.1 XRI Namespaces for XRI Resolution

72.1.1 XRIs Reserved for XRI Resolution

72.1.2 XRIs Assigned to XRI Resolution Service Types

72.2 XML Namespaces for XRI Resolution

93
XRDS Documents

93.1 XRDS and XRD Namespaces

93.2 XRD Elements and Attributes

133.3 XRD Attribute Processing Rules

133.3.1 ID Attribute

133.3.2 Version Attribute

133.3.3 Priority Attribute

143.3.4 Match Attribute

143.4 XRI Encoding Requirements

164
Input Processing

164.1 XRI Resolution Parameters

174.2 Processing Rules

195
Authority Resolution

195.1 XRI Authority Resolution

195.1.1 Service Type and Media Type

205.1.2 Protocol

225.1.3 Community Root Authorities

225.1.4 Qualified Subsegments

235.1.5 Lookahead Resolution

235.1.6 Construction of the Next Authority URI

245.1.7 Cross-References

255.2 IRI Authority Resolution

255.2.1 Service Type and Media Type

255.2.2 Protocol

255.2.3 Optional Use of HTTPS

265.3 Trusted Authority Resolution

265.3.1 Service Type and Media Type

265.3.2 Protocol

275.3.3 Lookahead Resolution

275.3.4 Client Validation of XRDs

285.3.5 Correlation of ProviderID and KeyInfo Elements

306
Service Endpoint Selection

306.1 Inputs

316.2 Processing Rules

326.3 Matching Rules

326.3.1 Match Attribute Values

326.3.2 Type Matching

336.3.3 Media Type Matching

336.3.4 Path Matching

336.4 Construction of Service Endpoint URIs

357
Proxy Resolution

357.1 Service Type and Media Type

357.2 HXRIs

367.3 Input Parameters

367.4 Protocol

367.5 Differences Between Proxy Resolution Servers

378
Reference Processing

378.1 Synonyms

388.2 Processing Rules

408.3 Nesting XRDS Documents

419
Error Processing

419.1 Error Codes

429.2 Error Messages

429.3 Error Handling in Lookahead Resolution

429.4 Error Handling in Proxy Resolution

4310
Use of HTTP(S)

4310.1 HTTP Errors

4310.2 HTTP Headers

4310.2.1 Caching

4310.2.2 Location

4310.2.3 Content-Type

4310.3 Other HTTP Features

4310.4 Caching and Efficiency

4511
Extensibility and Versioning

4511.1 Extensibility

4511.1.1 Extensibility of XRDs

4511.1.2 Other Points of Extensibility

4611.2 Versioning

4611.2.1 Version Numbering

4611.2.2 Versioning of the XRI Resolution Specification

4611.2.3 Versioning of XRDs

4711.2.4 Versioning of Protocols

4812
Security and Data Protection

4812.1 DNS Spoofing

4812.2 HTTP Security

4812.3 Caching Authorities

4812.4 Lookahead and Proxy Resolution

4812.5 SAML Considerations

4912.6 Community Root Authorities

4912.7 Denial-Of-Service Attacks

4912.8 Limitations of Trusted Resolution

5013
References

5013.1 Normative

5013.2 Informative

52Appendix A. XML Schema for XRDS and XRD (Normative)

54Appendix B. RelaxNG Compact Syntax Schema for XRDS and XRD (Informative)

55Appendix C. Acknowledgments

56Appendix D. Notices

1 Introduction

1.1 XRI Resolution

Extensible Resource Identifier (XRI) provides a uniform syntax for abstract structured identifiers as defined in [XRISyntax]. Because XRIs may be used across a wide variety of communities and applications (as Web addresses, messaging addresses, database keys, filenames, directory keys, object IDs, XML IDs, tags, etc.), no single resolution mechanism may prove appropriate for all XRIs. However, in the interest of promoting interoperability, this specification defines a standard protocol for resolving XRIs using HTTP(S). Both generic and trusted versions are defined (the latter using signed SAML assertions [SAML]). In addition, an HTTP(S) proxy resolution version is specified to provide backwards compatibility with existing HTTP(S) infrastructure.
1.2 Structure of this Specification

This specification is structured into the following major sections:

· XRI Namespaces for XRI Resolution (section 2) specifies the XRI namespaces that are reserved for the XRI resolution protocol.
· XRDS Documents (section 3) specifies a simple, flexible XML-based container for XRI resolution metadata or other metadata describing a resource.

· Input Processing (section 4) specifies the standard XRI resolution parameters and input error conditions.
· Authority Resolution (section 5) specifies a simple resolution protocol for the authority segment of an XRI using HTTP/HTTPS as a transport. It also specifies a trusted version that uses SAML assertions to create a chain of trust between the participating authorities.

· Service Endpoint Selection (section 6) specifies an optional second phase of resolution for selecting a set of service endpoint URIs from an XRDS document.
· Proxy Resolution (section 7) specifies a format for expressing an XRI as an HTTP(S) URI and using an HTTP(S) server as an XRI proxy resolver to perform authority resolution and service endpoint selection. This provides backwards compatibility with existing HTTP(S) infrastructure.
· Reference Processing (section 8) specifies how a resolver follows XRI references to enable federation of XRDS documents across multiple XRI authorities.

· Error Processing (section 9) specifies error codes and error processing instructions.

· Use of HTTP(S) (section 10) specifies how the XRI resolution protocol leverages features of the HTTP(S) protocol.

· Extensibility and Versioning (section 11) describes how the XRI resolution protocol can be easily extended, and how new versions will be identified and accommodated.
1.3 The XRI Implementor's Guide
To minimize non-normative material, this specification does not include sequence diagrams or extensive examples of resolution requests and responses. This material is available in the non-normative XRI Implementor's Guide [XRIGuide], a work-in-progress recommended for Internet developers, architects, network and directory administrators, and anyone else who builds, installs, maintains, or administers XRI infrastructure.
1.4 Terminology and Notation

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119]. When these words are not capitalized in this document, they are meant in their natural language sense.

Other terms used in this document and not defined herein are defined in the glossary in Appendix C of [XRISyntax].

Formatting conventions used in this document:

Examples look like this.

XML elements and attributes that appear in text look like this.

2 Namespaces

2.1 XRI Namespaces for XRI Resolution

As defined in section 2.2.1.2 of [XRISyntax], the GCS symbol “$” is reserved for special identifiers assigned by XRI TC specifications, other OASIS specifications, or other standards bodies. (See also [XRIMetadata].) This section specifies the $ namespaces reserved for XRI resolution.
2.1.1 XRIs Reserved for XRI Resolution
The XRIs in Table 1 are assigned by this specification for the purposes of XRI resolution and resource description.
	XRI
	Use
	See Section

	xri://$res
	Namespace for XRI resolution service types
	2.1.2

	xri://$xrds
	Namespace for the generic XRDS (Extensible Resource Descriptor Sequence) schema (not versioned)
	2.2

	xri://$xrd
	Namespace for the XRD (Extensible Resource Descriptor) schema
	2.2

	xri://$xrd*($v*2.0)
	Version 2.0 of above
	2.2

Table 1: XRIs reserved for XRI resolution.

2.1.2 XRIs Assigned to XRI Resolution Service Types
The XRIs in Table 2 are assigned to the XRI resolution service types defined in this specification.
	XRI
	Use
	See Section

	xri://$res*auth
	Authority resolution service
	5

	xri://$res*auth*($v*2.0)
	Version 2.0 of above
	5

	xri://$res*proxy
	HTTP(S) proxy resolution service
	7

	xri://$res*proxy*($v*2.0)
	Version 2.0 of above
	7

Table 2: XRIs assigned to identify XRI resolution service types.

Using the standard XRI extensibility mechanisms described in [XRISyntax], the “$res” namespace may extended by other authorities besides the XRI Technical Committee. See [XRIMetadata] for more information about extending “$” namespaces.

2.2 XML Namespaces for XRI Resolution

Throughout this document, the following XML namespaces prefixes have the meanings defined in Table 3 whether or not they are explicitly declared in the example or text.

	Prefix
	XML Namespace
	Reference

	xs
	http://www.w3.org/2001/XMLSchema
	[XMLSchema]

	saml
	urn:oasis:names:tc:SAML:2.0:assertion
	[SAML]

	ds
	http://www.w3.org/2000/09/xmldsig#
	[XMLDSig]

	xrds
	xri://$xrds
	Section 2.1.1 of this document

	xrd
	xri://$xrd*($v*2.0)
	Section 2.1.1 of this document

Table 3: XML namespace prefixes used in this specification.

3 XRDS Documents
XRI resolution uses a simple, extensible XML format called an XRDS (Extensible Resource Descriptor Sequence) document. An XRDS document contains one or more XRD (Extensible Resource Descriptor) elements. While this specification defines only the XRD child elements necessary to support delegated resolution and redirection of XRIs, XRDs can easily be extended to publish any form of metadata about the resources they describe.

3.1 XRDS and XRD Namespaces
An XRDS document is intended to serve exclusively as an XML container document for XML schemas from other XML namespaces. Therefore it has only a single root element xrds:XRDS in its own XML namespace identified by the XRI “xri://$xrds”. It also has a single attribute, xrds:XRDS/@xrds:ref of type anyURI that identifies the resource described by the XRDS document. The formal XML schema definition of an XRDS document is provided in Appendix A.
The elements in the XRD schema are intended for generic resource description, including the metadata necessary for XRI resolution. Since the XRD schema has simple semantics that may evolve over time, the version defined in this specification uses the XML namespace “xri://$xrd*($v*2.0)”. This namespace is versioned using XRI version metadata as defined in [XRIMetadata]. The formal XML schema definition of an XRDS document is also provided in Appendix A.
This namespace architecture enables the XRDS namespace to remain constant while the allowing the XRD namespace (and the namespaces of other XML elements that may be included in an XRDS document) to be versioned over time. See section 11.2 for more about versioning of the XRD schema.

3.2 XRD Elements and Attributes
The following example XRDS instance document
illustrates the elements and attributes defined in the XRD schema (see Appendix A for the formal XML schema definition):

<XRDS xmlns="xri://$xrds" ref="xri://(example.root)*foo">

 <XRD xmlns:xrd="xri://$xrd*($v*2.0)">

 <Query>*foo</Query>
 <Status code="100"/>
 <Expires>2005-05-30T09:30:10Z</Expires>

 <ProviderID>urn:uuid:c9f812f3-6544-4e3c-874e-d3ae79f4ef7b</ProviderID>

 <LocalID>*bar</LocalID>

 <CanonicalID>xri://@!1000!1234</CanonicalID>

 <Ref>xri://!!4444!5555!6666</Ref>

 <Service>

 <ProviderID>xri://!!1000!1234.5678</ProviderID>

 <Type>xri://$res*auth*($v*2.0)</Type>
 <MediaType>application/xrds+xml</MediaType>
 <URI priority=”10”>http://resolve.example.com</URI>

 <URI priority=”15”>http://resolve2.example.com</URI>
 <URI>https://resolve.example.com</URI>

 </Service>

 <Service>

 <Type match="null" />

 <Path match="only">media/pictures</Path>

 <MediaType match="only">image/jpeg</MediaType>

 <URI>http://pictures.example.com</URI>

 </Service>

 <Service>

 <Type match="null" />

 <Path match="only">media/videos</Path>

 <MediaType match="only">video/mpeg</MediaType>

 <URI>http://videos.example.com</URI>

 </Service>

 <Service>

 <ProviderID> xri://!!1000!1234.5678</ProviderID>

 <Type match="null" />

 <Path match="default" />

 <URI>http://example.com/local</URI>

 </Service>

 <Service>

 <Type>http://example.com/some/service/v3.1</Type>

 <URI>http://example.com/some/service/endpoint</URI>

 </Service>

 </XRD>

</XRDS>

Following are the elements in the XRD schema:

xrd:XRD
Container element for all other XRD elements. Includes an optional @xml:id attribute of type xs:ID. This attribute is REQUIRED in trusted resolution to uniquely identify this element within the containing xrd:XRDS document. It also includes an optional @xrd:id attribute of type xs:idref. This attribute is REQUIRED in trusted resolution when an XRD element in a nested xrd:XRDS document must reference a previously included XRD instance. See section 3.3 for details of ID attribute processing and section 8.2 for details of reference processing.
xrd:XRD/xrd:Query

0 or 1 per xrd:XRD element. Expresses the XRI, IRI, or URI reference in URI normal form whose resolution results in this xrd:XRD element. For XRI authority resolution, this must be a qualified subsegment of the authority component of the query XRI.

xrd:XRD/xrd:Status

0 or 1 per xrd:XRD element. Contains a required attribute @xrd:code of type xs:int that provides a numeric status code. The contents of the element are an optional human-readable message string describing the status of the response. For XRI resolution, values of the Status element and @xrd:code attribute are defined in section 9.
xrd:XRD/xrd:Expires

0 or 1 per xrd:XRD element. The date/time, in the form of xs:dateTime, after which this XRD cannot be relied upon. To promote interoperability, this date/time value SHOULD use the UTC "Z" time zone and SHOULD NOT use fractional seconds. A resolver using this XRD MUST NOT use the XRD after the time stated here. A resolver MAY discard this XRD before the time indicated in this result. If the HTTP transport caching semantics specify an expiry time earlier than the time expressed in this attribute, then a resolver MUST NOT use this XRD after the expiry time declared in the HTTP headers per section 13.2 of [RFC2616]. See section 10.2.1.
xrd:XRD/xrd:ProviderID

0 or 1 per xrd:XRD. A unique identifier of type xs:anyURI for the authority producing this XRD. There MUST be negligible probability that the value of this element will be assigned as an identifier to any other authority. Note that for XRI authority resolution, the authority identified by this element is the describing authority (the producer of the current XRD), not the authority described by the XRD. The latter is specified in the xrd:XRD/xrd:Service/xrd:ProviderID element for a resolution service endpoint (see below).
xrd:XRD/xrd:LocalID

0 or more per xrd:XRD element. Type xs:anyURI. This element MUST be an interchangeable synonym for the contents of the xrd:XRD/xrd:Query element, i.e., it an XRI, IRI, or URI reference in URI normal form be assigned to the same target resource by the same authority producing the current XRD. It MUST resolve to the current XRD (with the exception of the xrd:Query, xrd:Expires, and xrd:LocalID elements.) Because there may be multiple local synonyms, this element has the global @xrd:priority attribute (see section 3.3.3).
xrd:XRD/xrd:CanonicalID
0 or more per xrd:XRD element. Type xs:anyURI. Contains an absolute XRI, IRI, or URI that serves as a canonical identifier for the described resource, i.e. the preferred synonym among all synonyms. If the contents is an XRI, it may or may not be resolvable and if resolvable may or may not resolve to the same XRD. Because a resource may have more than one canonical synonym (such as in the case of merged resources), this element has the global @xrd:priority attribute (see section 3.3.3). Applications using this element to identify the target resource SHOULD try alternate instances if the top priority instance is not recognized.
xrd:XRD/xrd:Ref
0 or more per xrd:XRD element. Identical to xrd:XRD/xrd:CanonicalID except assigned by a different authority than the authority producing the current XRD. Resolution of this reference MAY produce a different XRD for the described resource (see section 8.) Because a resource may have more than one reference, this element has the global @xrd:priority attribute (see section 3.3.3).
xrd:XRD/saml:Assertion
0 or 1 per xrd:XRD. Optional for generic authority resolution, but required for trusted authority resolution (section 5.3). A SAML assertion from the describing authority (the one producing the current XRD) that asserts that the information contained in the current XRD is authoritative. Because the assertion is digitally signed and the digital signature encompasses the containing xrd:XRD element, it also provides a mechanism for the recipient to detect unauthorized changes since the time the XRD was published.

Note that while a saml:Issuer element is required within a saml:Assertion element, this specification makes no requirement as to the value of the saml:Issuer element. It is up to the XRI community resolution root to place restrictions, if any, on the saml:Issuer element. A suitable approach is to use an XRI in URI-normal form that describes the community root authority. See section 5.1.3.

xrd:XRD/xrd:Service

0 or more. Describes a capability of the described resource, e.g., a network endpoint for performing further resolution, obtaining further metadata, or interacting directly with the described resource. Because there can be more than one instance of a particular service type for redundancy, this element has the global @xrd:priority attribute (see section 3.3.3).
xrd:XRD/xrd:Service/xrd:ProviderID

0 or 1 per xrd:XRD/xrd:Service element. Optional for generic authority resolution (section 5.1), but required for trusted authority resolution (section 5.3). See the definition for xrd:XRD/xrd:ProviderID above. The only difference is that this represents the provider of the service instead of the provider of the current XRD. In trusted resolution, when a resolution request is made to the authority at this service endpoint, the contents of the xrd:XRD/xrd:ProviderID element in the response MUST match the content of this element for correlation. See section 5.3.5. The same usage MAY apply to other services not defined in this specification.
xrd:XRD/xrd:Service/ds:KeyInfo
0 or 1 per xrd:XRD/xrd:Service element. Optional for generic authority resolution, but required for trusted authority resolution (section 5.3). Provides the digital signature metadata needed to validate an XRD provided as a resolution response by the described authority. This element comprises the key distribution method for trusted authority resolution in the XRI resolution framework—see section 5.3.5.
xrd:XRD/xrd:Service/xrd:Type
0 or more per xrd:XRD/xrd:Service element. A unique identifier of type xs:anyURI that identifies the type of capability available at this service endpoint. This element includes the global @xrd:match attribute (section 3.3.4) for use in service endpoint selection (section 6). See section 2.1.2 for the resolution service types defined in this specification.

xrd:XRD/xrd:Service/xrd:MediaType

0 or more per xrd:XRD/xrd:Service element. The media type of content available at this service endpoint. The value of this element must be of the form of a media type defined in [RFC2046]. This element includes the global @xrd:match attribute (section 3.3.4) for use in service endpoint selection (section 6).
xrd:XRD/xrd:Service/xrd:Path

0 or more per xrd:XRD/xrd:Service element. Of type xs:string. Contains a value meeting the xri-path production defined in section 2.2.3 of [XRISyntax]. This element includes the global @xrd:match attribute (section 3.3.4) for use in service endpoint selection (section 6).
xrd:XRD/xrd:Service/xrd:URI
0 or more per xrd:XRD/xrd:Service element. Of type xs:anyURI. If present, it indicates a transport-level URI for access to the capability described by the parent Service element. For the XRI resolution service types defined in section 2.1.2, this URI MUST be an HTTP or HTTPS URI. Other services may use other transport protocols. This element has the global priority attribute (section 3.3.3). It also includes the @xrd:append attribute that governs construction of the final service endpoint URI. See section 6.4.
The XRD schema (Appendix A) allows other elements and attributes from other namespaces to be added throughout. As described in section 11.1.1, these points of extensibility can be used to deploy new XRI resolution schemes, new service description schemes, or other metadata about the described resource.
3.3 XRD Attribute Processing Rules
3.3.1 ID Attribute

For uses such as XRI trusted resolution (section 5.3) that require unique identification of multiple XRD elements within an XRDS document, the XRD element uses an optional xml:id attribute as defined by the W3C XML ID specification [XMLID]. If present, the value of this element MUST be unique for all elements in the containing XML document. Because an XRI resolver may assemble multiple XRDs received from different authority resolution services into one XRDS document, there MUST be negligible probability that the value of the xrd:XRD/@xml:id attribute is not globally unique. For this reason the value of this attribute SHOULD be a UUID as defined by [UUID] prefixed by a single underscore character "_" in order to make it a legal NCName as required by [XMLID]. However the value of this attribute MAY be generated by any algorithm that fulfills the same requirement of global uniqueness and NCName conformance.

Note that when an XRI resolver is assembling multiple XRDs into a single XRDS document, their XML document order MUST match the order in which they were resolved according to the authority resolution protocol specified in section 4.
3.3.2 Version Attribute

Unlike the XRDS element, which is not intended to be versioned, the xrd:XRD element has the optional attribute xrd:XRD/@xrd:version. Use of this attribute is REQUIRED for XRI resolution. The value of this attribute MUST be the exact numeric version value of the XRI Resolution specification to which its containing XRD element conforms. See section 2.1.1.
For more about versioning of the XRI resolution protocol, see section 11.2.
3.3.3 Priority Attribute

Certain XRD elements involved in the XRI resolution process (xrd:XRD/xrd:Ref, xrd:XRD/xrd:Service, and xrd:XRD/xrd:Service/xrd:URI) may be present multiple times in an XRDS document to provide redundancy. In this case the global priority attribute may be used to prioritize selection of these element instances. Like the priority attribute of DNS records, it accepts a non-negative integer value.
Following are the normative processing rules that apply whenever there is more than one instance of a selected element type in an XRD (if there is only one instance selected, the priority attribute is ignored.)
1. The client SHOULD select the element instance with the lowest numeric value of the priority attribute. For example, an element with priority attribute value of “10” should be selected before an element with a priority attribute value of “11”, and an element with priority attribute value of “11” should be selected before an element with a priority attribute value of “15”. Zero is the highest priority attribute value. Null is the lowest priority attribute value.
2. If an element has no priority attribute, its priority attribute value is considered to be null.

3. If two or more instances of the same element type have identical priority attribute values (including the null value), the client SHOULD select one of the instances at random. This client SHOULD NOT simply choose the first instance that appears in XML document order (this is important in order to support intentional load balancing).
4. An element selected according to these rules is referred to as “the highest priority element”. If this element is subsequently disqualified from the set of qualified elements, the next element selected according to these rules is referred to as “the next highest priority element”. If an XRI resolution protocol operation specifying selection of the highest priority element fails, the resolver SHOULD attempt to select the next highest priority element unless otherwise specified. This process SHOULD be continued for all other element instances until success is achieved or all instances are exhausted.

When setting priority attributes, it is recommended that XRI authorities follow the standard practice in DNS and set the default highest priority attribute value to “10”.

3.3.4 Match Attribute

In XRDs, elements whose value is used to control the selection of their parent element can contain the global @xrd:match attribute. For example, in XRI resolution three child elements of the xrd:XRD/xrd:Service element (xrd:Type, xrd:Path, and xrd:MediaType) use the @xrd:match attribute for the service endpoint selection process (section 6). This attribute accepts an enumerated list of values as shown in Table 4.
	Value
	Matching Rule (for corresponding input parameter)

	default
	Match only if there there are no other matches in the XRD on this element type (except another default match). This is the default value if an instance of an element that accepts the @xrd:match attribute is entirely absent.

	content
	Match the content of the element. Unlike “only”, a successful match does not automatically result in selection of the parent element because it may be combined with matching rules on other elements (see section 6.3). This is the default value if an element that accepts the @xrd:match attribute is present but the attribute is omitted or its value is null.

	only
	Match the content of the element. Unlike “content”, a successful match automatically results in selection of the parent element regardless of any other matching rules.

	any
	Match any value (null or non-null).

	non-null
	Match any value except null.

	null
	Match a null value.

	none
	Do not match. This value means the parent element is temporarily deactivated.

Table 4: Enumerated values of the global match attribute

For additional rules concerning the use of the match attribute for service endpoint selection, see section 6.3.

3.4 XRI Encoding Requirements

The W3C XML 1.0 specification [XML] requires values of XML elements of type xs:anyURI to be valid IRIs. Thus all XRIs used as the values of XRD elements of this type MUST be in at least IRI-normal form as defined in section 2.3 of [XRISyntax].

A further restriction applies to XRIs used in XRI resolution because it relies on HTTP or HTTPS as transport protocols. When an XRI is used as the value of an xrd:XRD/xrd:Query, xrd:XRD/xrd:LocalID, xrd:XRD/xrd:Ref, xrd:XRD/xrd:Type, or xrd:XRD/xrd:Path element, it MUST be in URI-normal form as defined in section 2.3 of [XRISyntax].

Note that XRIs composed entirely of valid URI characters do not require escaping in the transformation to URI-normal form. However XRIs that use characters only valid in IRIs or that use certain XRI syntax delimiters may require percent encoding in the transformation to URI-normal form as explained in section 2.3 of [XRISyntax].
4 Input Processing

4.1 XRI Resolution Parameters

To ensure consistency among XRI resolver implementations (including XRI proxy resolvers, section 7), a query XRI (QXRI) MAY include resolution parameters encoded as part of its query component. These parameters are defined in Table 5.

	Parameter Name
	Applies to Resolution Phase
	Parameter Value

	_xrd_a
	Authority
resolution
	Value of xrd:XRD/xrd:Service/xrd:MediaType element to use during authority resolution

	_xrd_n
	Authority
resolution
	Boolean flag governing whether the resolver should perform reference processing (section 8)

	_xrd_t
	Service endpoint selection
	Value of xrd:XRD/xrd:Service/xrd:Type element to use for service endpoint selection

	_xrd_m
	Service endpoint selection
	Value of xrd:XRD/xrd:Service/xrd:MediaType element to use for service endpoint selection

Table 5: Optional resolution parameters that may be included in the query component of a QXRI.

These parameters (and others specific to a resolver implementation) MAY also be implemented through a local API or some other interface. Regardless of how they are supplied, these parameters MUST be subject to the processing rules in the following section.

4.2 Processing Rules

Figure 1 describes generic input processing of a query XRI (QXRI) by an XRI resolver. The error codes listed are further described in section 8.

[image: image2.emf]Input QXRI

Input valid? No

QXRI

includes

resolution

params?

Error 10 or 11

Yes

Yes

Known

community root

authority?

No

No Error 16

Yes

Go to

Authority

Resolution

Flowchart

Select highest priority URI

of highest priority authority

resolution service for

community root

Valid

parameters?

No

Errors 12, 13, 14,

or 15

Yes

Figure 1: Input processing flowchart

The normative input processing rules for XRI resolution are:

5. The QXRI MUST be a valid absolute XRI according to the ABNF defined in [XRISyntax]. To resolve a relative XRI reference, it must be converted into an absolute XRI using the procedure defined in section 2.4 of [XRISyntax].
6. The XRI being resolved MUST be in URI-normal form as defined in section 2.3.1 of [XRISyntax].
7. If the XRI resolution parameters defined in section 4.1 are specified in the QXRI, these parameters MUST appear in the query component of the QXRI. They MUST be delimited from other parameters by an ampersand (“&”). They MUST be delimited from their values by an equals sign (“=”). Any occurrences of the character “&” within an input parameter MUST be percent encoded prior to input. A parameter specified in this manner SHOULD take precedence over the same parameter provided via any other interface (such as a local API), even if its value is explicitly null. Only if parameter is completely absent in a QXRI should the same parameter be accepted when supplied via another interface.
8. If the _xrd_a parameter is specified as application/xrds+xml, the generic authority resolution protocol specified in section 5.1 (for an XRI authority) or 5.2 (for an IRI authority) MUST be used during the authority resolution phase. If the _xrd_a parameter is specified as application/xrds-saml+xml, the trusted authority resolution protocol specified in section 5.3 MUST be used during the authority resolution phase. If the _xrd_a parameter is absent or its value is null, either the generic or trusted authority resolution protocols MAY be used.

9. A QXRI that does not meet these input requirements SHOULD produce the appropriate error code as specified in section 9.
5 Authority Resolution

In the XRI resolution protocol, authority resolution is the process of iteratively requesting XRDS documents for each subsegment in the authority segment of the QXRI the same way DNS resolvers iteratively request IP addresses in order to reach the next nameserver in a federated DNS name. Each XRDS document describes the next resolution service endpoint. The final XRDS document describes the final target authority and the service endpoints available for further interaction (if any).

Besides the XML response format, the other key contrast with DNS resolution is that XRI resolution uses HTTP/HTTPS as the transport protocol. (Note that future versions of this specification or specifications for other forms of XRI resolution may use other transport protocols.) The use of HTTP(S) enables XRI resolution to be easily deployed on the large installed base of public and private Web servers.
Note that a resource represented by a single XRI may be accessible by multiple protocols at multiple service endpoints—for example, through multiple HTTP URIs, or through both HTTP and another network protocol. While only HTTP or HTTPS access to resources is defined by this specification, XRDS documents enable access to resources via URIs in any scheme.

In addition, each service endpoint associated with a resource identified by an XRI may present a different subset, type, or representation of data or metadata associated with the identified resource. For example, two separate HTTP URIs may be associated with a single XRI, one for data access and the other for metadata access.

As described in section 2.2.1 of [XRISyntax], XRI authorities and IRI authorities have different syntactic structures, partially due to the higher level of abstraction represented by XRI authorities. For this reason, XRI authorities are resolved to XRDS documents one subsegment at a time as defined in section 5.1. IRI authorities, since they are based on DNS names or IP addresses, are resolved into an XRDS document through a special HTTP(S) request based on the DNS name or IP address identified by the IRI authority segment as defined in section 5.2.

5.1 XRI Authority Resolution

5.1.1 Service Type and Media Type
The resolution service defined in this section is identified by the xrd:XRD/xrd:Service/xrd:Type element value “xri://$res*auth*($v*2.0)” and the xrd:XRD/xrd:Service/xrd:MediaType value “application/xrds+xml”.
5.1.2 Protocol

Following input validation (section 4), Figure 2 shows the overall logical flow of the generic authority resolution process followed by an XRI resolver. More details on each step are provided in the following sections.

[image: image3.emf]Begin

Authority

Resolution

Request XRDS

document

Construct Next

Authority URI

Error? Yes

Next highest

priority URI?

No

Next highest

priority authority

resolution

service?

Yes

No

Yes

More authority

subsegments?

Return current

XRDS document

No

Select highest

priority URI

Yes

Yes

Error [network or

database error]

No

Select Services where

Type =

“xri://$res*auth*($v*2.0)”

and MediaType = value

of _xrd_a parameter

No Services

selected?

1 Service

selected?

No

Yes

Branch to

Reference

Selection

Flowchart

Error [no valid

ref]

Resolve Ref to

new XRDS

document or error

Error?

Error?

Yes

No

Yes

Select highest priority

Service

No

This is a recursive call; if

successful it results in a

nested XRDS document

_xrd_n

parameter =

True?

Set Status Code =

[no follow ref]

Return current

XRDS document

No

Yes

No

Figure 2: Authority resolution flowchart
Following are the normative requirements for behavior of an XRI resolver and an XRI resolution service for performing generic authority resolution:
10. The resolver MUST be preconfigured with the XRD metadata (or a means of obtaining such metadata) describing the community root authority for the XRI to be resolved as defined in section 5.1.3.
11. Resolution by the resolver of each authority subsegment after the community root subsegment MUST proceed in subsegment order (left-to-right) using fully qualified subsegment values as defined in section 5.1.4. If the final output of XRI resolution is an XRDS document, this document MUST contain an ordered list of xrd:XRD elements—one for every authority subsegment successfully resolved by the resolver client. This list MUST appear in the same order as the corresponding subsegments in the QXRI. In addition, any references followed MUST be represented by nested xrd:XRDS documents immediately following the xrd:XRD element containing the reference as defined in section 8.
12. A resolver MAY request lookahead resolution of multiple subsegments as defined in section 5.1.5.

13. Each subsegment MUST be resolved via an HTTP or HTTPS GET request to a URI constructed as defined in section 5.1.6.

14. The HTTP(S) request MUST contain an Accept header with the value of “application/xrds+xml”.

15. Subsegments that use XRI cross-reference syntax MUST be resolved as defined in section 5.1.7.

16. The ultimate HTTP(S) response from an authority resolution service to a successful resolution request MUST contain either: a) a 2XX response with a valid XRDS document (section 2.2), or b) a 304 response signifying that the cached version on the resolver is still valid (depending on the client’s HTTP(S) request). There is no restriction on intermediate redirects (i.e., 3XX result codes) or other result codes (e.g., a 100 HTTP response) that eventually result in a 2XX or 304 response through normal operation of [RFC2616].
17. If the values of the Type and Path parameters are null and the value of the MediaType parameter is “application/xrds+xml” or “application/xrds-saml+xml”, the resolver MUST return either a valid XRDS document or an error. For any other set of input parameters, the resolver MUST perform the service endpoint selection process specified in section 6.

18. Any ultimate response besides an HTTP 2XX or 304 SHOULD be considered an error in the resolution process and the resolver SHOULD return the appropriate error code and message as specified in section 9. In lookahead resolution, such an error MUST be returned by the resolution service to the resolver as specified in section 9.3. In proxy resolution, such an error MUST be returned as specified in section 9.4.
19. A successful response that does not include the next authority service endpoint in the XRD but includes one or more xrd:XRD/xrd:Ref elements MUST be processed as defined in section 8. Note that such reference processing, if successful, will result in a separate nested XRDS document describing the resolved reference.
20. All other uses of HTTP(S) in this protocol MUST comply with the requirements in section 10. In particular, HTTP caching semantics SHOULD be leveraged to the greatest extent possible to maintain the efficiency and scalability of the HTTP-based resolution system. The recommended use of HTTP caching headers is described in more detail in section 10.2.1.

5.1.3 Community Root Authorities
Identifier management policies are defined on a community-by-community basis. For XRI authorities, the resolution community is specified by the first (leftmost) subsegment of the authority segment of the XRI. This is referred to as the community root authority. When a resolution community chooses to create a new community root authority, it SHOULD define policies for assigning and managing identifiers under this authority. Furthermore, it SHOULD define what resolution protocol(s) may be used for resolving identifiers assigned by the authority.

For an XRI authority, the community root may be either a global context symbol (GCS) character or top-level cross-reference as specified in section 2.2.1.1 of [XRISyntax]. In either case, the corresponding root XRDS document (or its equivalent) specifies the top-level authority resolution service endpoints for that community.

This community root XRDS document, or its location, must be known a priori and is part of the configuration of an XRI resolver, similar to the specification of root DNS servers for a DNS resolver. Note that is not strictly necessary to publish this information in an XRDS document—it may be supplied in any format that enables configuration of the XRI resolvers in the community. However, providing an XRDS document at a known location simplifies this process. In addition, it is a recommended best practice in trusted resolution (section 5.3) for the community root authority to publish an XRDS document containing a valid self-signed SAML assertion accessible via an HTTPS server or other secure means.
For a list of public community root authorities and the locations of their community root XRDS documents, see the XRI Technical Committee home page at http://www.oasis-open.org/committees/xri.
If the first subsegment of an XRI authority is a GCS character and the following subsegment does not begin with a “*” (indicating a reassignable subsegment) or a “!” (indicating a persistent subsegment), then a “*” is implied and MUST be added when constructing the qualified subsegment as specified in section 5.1.6. Table 6 and Table 7 illustrate the differences between parsing a reassignable subsegment following a GCS character and parsing a cross-reference, respectively.

	XRI
	xri://@example*internal/foo

	XRI Authority
	@example*internal

	Community Root Authority
	@

	First Qualified Subsegment Resolved
	*example

Table 6: Parsing the first subsegment of an XRI that begins with a global context symbol.

	XRI
	xri://(http://www.example.com)*internal/foo

	XRI Authority
	(http://www.example.com)*internal

	Community Root Authority
	(http://www.example.com)

	First Qualified Subsegment Resolved
	*internal

Table 7: Parsing the first subsegment of an XRI that begins with a cross-reference.

5.1.4 Qualified Subsegments
A qualified subsegment is defined by the productions whose names start with “xri-subseg” in section 2.2.3 of [XRISyntax] including the leading syntactic delimiter (“*” or “!”). A qualified subsegment MUST include the leading syntatic delimiter even if it was optionally omitted in the original XRI (see section 2.2.3 of [XRISyntax]).
5.1.5 Lookahead Resolution

Both generic and trusted authority resolution service allow a resolver to request resolution of multiple authority subsegments in one transaction. This process is called lookahead resolution. If a resolver makes such a request, the responding authority resolution service MAY perform the additional lookahead resolution steps requested. In this case the responding resolution service acts as a resolver to the other authority resolution service endpoints that need to be queried for the lookahead subsegments. Alternatively, the responding resolution service may retrieve XRDs from its local cache until it reaches a subsegment whose XRD is not locally cached, or it may simply lookahead only as far as it is authoritative. If an authority resolution service performs any lookahead resolution, it MUST return an ordered list of xrd:XRD elements (and nested xrd:XRDS elements if references are followed) in an xrd:XRDS document for all subsegments resolved as defined in section 5.1.2.

The responding resolution service MAY resolve fewer subsegments than requested by the resolver. The responding resolution service is under no obligation to resolve more than the first subsegment (for which it is, by definition, authoritative).

If the responding resolution service does not resolve the entire set of subsegments requested, the resolver MUST continue the authority resolution process itself. At any stage, however, the resolver MAY request that the next authority resolution service resolve any remaining unresolved subsegments.

5.1.6 Construction of the Next Authority URI
At each step in authority resolution, a URI must be constructed for the next HTTP(S) request. This URI is constructed by the XRI resolver from two strings—one representing the next authority resolution service endpoint selected from the current XRD, and one representing the next subsegment or group of subsegments in the authority segment of the QXRI being resolved.
The process for selecting the next authority resolution service endpoint from the current XRD is defined in section 6. For XRI authority resolution, the process MUST select from the valid input parameters defined in Table 8:

	Parameter Name
	Valid Parameter Values

	_xrd_t
	xri://$res*auth
xri://$res*auth*($v*2.0)

	_xrd_a
	application/xrds+xml
application/xrds-saml+xml

Table 8: Input parameters for selection of authority resolution service.

The value of the xrd_media_type parameter MUST be “application/xrds+xml” if a generic authority resolution service endpoint is requested and “application/xrds-saml+xml” if a trusted authority resolution service endpoint is requested (section 5.3).

From the output of the service endpoint selection process, the resolver MUST select the highest priority URI. If this service endpoint URI does not end with a forward slash (“/”), one MUST be appended before proceeding.

The second string is the query string. In authority resolution (both generic and trusted), the query string is supplied by the XRI resolver and consists of either:
· The next fully qualified subsegment to be resolved (see section 5.1.4), or
· In the case of lookahead resolution, the next fully qualified subsegment plus any additional subsegments for which lookahead resolution is requested (see section 5.1.5).
The query string MUST be in URI-normal form as required in section 3.4.
The final step is to append the query string to the path component of the service endpoint URI. The resulting URI is called the next authority URI.

Construction of the next authority URI is more formally described in this pseudo-code for resolving a “query-string” via an authority resolution service endpoint URI called “auth-res-uri”:

if (path portion of auth-res-uri does not end in “/”):

 append “/” to path portion of auth-res-uri

if (query-string is not preceded with “*” or “!” delimiter):

 prepend “*” to query-string
append uri-escape(query-string) to path portion of auth-res-uri

5.1.7 Cross-References

Any subsegment within an XRI authority segment may be a cross-reference (see section 2.2.2 of [XRISyntax].) In general, cross-references are resolved identically to any other subsegment because the cross-reference is considered opaque, i.e., the value of the cross-reference (including the parentheses) is the literal value of the subsegment for the purpose of resolution.

The one exception is a cross-reference rooted on the global context symbol dollar sign ("$"). In this case the significance of the cross-reference for resolution depends on the specification governing the namespace following the $ character. For the XRI suite of specifications, this is the XRI Metadata Specification [XRIMetadata].

Currently, [XRIMetadata] defines only one type of $ metadata that is insignificant for resolution: an annotation cross-reference that begins with “$-”. A cross-reference that begins with this character sequence and the delimiter that precedes it MUST be ignored entirely during XRI resolution.
Table 9 provides several examples of resolving cross-references. In these examples, subsegment “!b” resolves to a next authority URI of “http://example.com/xri-authority/” and lookahead resolution is not being requested.

	Cross-reference type
	Example XRI
	Next Resolution URI after resolving “xri://@!a!b”

	Absolute XRI
	xri://@!a!b!(@!1!2!3)*e/f
	http://example.com/xri-authority/!(@!1!2!3)

	Absolute URI
	xri://@!a!b*(mailto:jd@example.com)*e/f
	http://example.com/xri-authority/*(mailto:jd@example.com)

	Relative XRI
	xri://@!a!b*(c*d)*e/f
	http://example.com/xri-authority/*(c*d)

	Relative URI
	xri://@!a!b*(foo/bar)*e/f
	http://example.com/xri-authority/*(foo%2fbar)

	Metadata XRI (significant)
	xri://@!a!b*($v/2.0)*e/f
	http://example.com/xri-authority/*($v*2.0)

	Metadata XRI (ignored)
	xri://@!a!b*($-comment)*e/f
	http://example.com/xri-authority/*e

Table 9: Examples of the Next Authority URIs constructed using different types of cross-references.
5.2 IRI Authority Resolution

From the standpoint of generic authority resolution, an IRI authority segment represents either a DNS name or an IP address at which an XRDS document describing the authority may be retrieved using HTTP(S). Thus IRI authority resolution simply involves making an HTTP(S) GET request to a URI constructed from the IRI authority segment. The resulting XRDS document can then be consumed in the same manner as one obtained using XRI authority resolution.
While the use of IRI authorities provides backwards compatibility with the large installed base of DNS- and IP-identifiable resources, IRI authorities do not support the additional layer of abstraction, delegation, and extensibility offered by XRI authority syntax. Therefore IRI authorities are not recommended for new deployments of XRI identifiers.

This section defines IRI authority resolution as a simple extension to the XRI authority resolution protocol defined in the preceeding section.

5.2.1 Service Type and Media Type
Because IRI authority resolution takes place at a level “below” XRI authority resolution, it cannot be described in an XRD, and thus there is no corresponding resolution service type. IRI authority resolution uses the same media types as XRI authority resolution.

5.2.2 Protocol

Following are the normative requirements for IRI authority resolution that differ from generic XRI authority resolution:

21. The next authority URI is constructed by extracting the entire IRI authority segment and prepending the string “http://”. See the exception in section 5.2.3.
22. The HTTP GET request MUST include an HTTP Accept header containing only the following:

Accept: application/xrds+xml
23. The HTTP GET request MUST have a Host: header (as defined in section 14.23 of [RFC2616]) containing the value of the IRI authority segment.
24. An HTTP server acting as an IRI authority SHOULD respond with an XRDS document containing the XRD describing that authority.

25. The responding server MUST use the value of the Host header to populate the xrd:XRD/xrd:Query element in the resulting XRD. For example:

Host: example.com

Note that because IRI authority resolution is required to process the entire IRI authority segment in a single step, lookahead resolution does not apply.
5.2.3 Optional Use of HTTPS
Section 5.3 of this specification defines trusted resolution only for XRI authorities. Trusted resolution is not defined for IRI Authorities. If, however, an IRI authority is known to respond to HTTPS requests (by some means outside the scope of this specification), then the resolver MAY use HTTPS as the access protocol for retrieving the authority’s XRD. If the resolver is satisfied, via transport level security mechanisms, that the response is from the expected IRI authority, the resolver may place greater trust in the contents of this XRD.

5.3 Trusted Authority Resolution

This section defines a service for performing trusted XRI authority resolution as an extension of the generic XRI authority resolution service defined in section 5.1.
In trusted resolution, the resolver requests a content type of “application/xrds-saml+xml” and the authority resolution service responds with an XRDS document containing an XRD with an additional element—a digitally signed SAML [SAML] assertion that asserts the validity of the containing XRD. If the response does not contain a valid, digitally signed SAML assertion as defined in section 5.3.4, this is an error and trusted resolution must not proceed.

This trusted resolution protocol does not provide a means to encrypt the contents of resolution requests and responses, nor does it provide a means for a responder to provide different responses for different requestors. These services may be provided by other security protocols used in conjunction with this specification, but confidentiality and client-authentication are explicitly out of scope of this version of this specification.

5.3.1 Service Type and Media Type
The resolution service defined in this section is identified by the xrd:XRD/xrd:Service/xrd:Type element value “xri://$res*auth*($v*2.0)” and the xrd:XRD/xrd:Service/xrd:MediaType value “application/xrds-saml+xml”.

5.3.2 Protocol

This section normatively defines resolver and authority resolution service behavior in trusted authority resolution.

5.3.2.1 Client Requirements
For a resolver, trusted resolution is identical to the generic resolution protocol (section 5.1) with the addition of the following requirements:

26. The resolver SHOULD NOT request trusted resolution service from an authority unless an XRD describing the authority contains a service endpoint matching the values specified in section 5.3.1.
27. In a resolution request, the resolver MUST include an HTTP Accept header with the media type identifier “application/xrds-saml+xml”. Clients willing to accept either trusted or untrusted resolution descriptors may use a combination of “application/xrds-saml+xml” and “application/xrds+xml” in the Accept header as described in section 14.1 of [RFC2616]. Media type identifiers SHOULD be ordered according to the client’s preference for the media type of the response.

28. A resolver MAY request lookahead resolution of multiple subsegments as defined in section 5.1.5.

29. The resolver MUST individually validate each XRD in a resolution chain according to the rules defined in section 5.3.4. When xrd:XRD elements come both from freshly-retrieved XRD documents and from a local cache, a resolver MUST ensure that these requirements are satisfied each time a resolution request is performed.

5.3.2.2 Server Requirements

For a resolution service, trusted resolution is identical to the generic resolution protocol (section 5.1) with the addition of the following requirements:

30. The HTTP(S) response to a trusted resolution request MUST include a content type of “application/xrds-saml+xml”.

31. The XRDS document returned by the resolution service MUST contain a saml:Assertion element as an immediate child of the xrd:XRD element that is valid per the processing rules described by [SAML].
32. The SAML assertion MUST contain a valid enveloped digital signature as defined by [XMLDSig] and as constrained by section 5.4 of [SAML].

33. The signature MUST apply to the xrd:XRD element that contains the signed SAML assertion. Specifically, the signature MUST contain a single ds:SignedInfo/ds:Reference element, and the URI attribute of this reference MUST refer to the xrd:XRD element that is the immediate parent of the signed SAML assertion. The URI reference MUST NOT be empty and it MUST refer to the identifier contained in the xrd:XRD/@xml:id attribute.

34. In [SAML], the digital signature enveloped by the SAML assertion may contain a ds:KeyInfo element. If this element is included, it MUST describe the key used to verify the digital signature element. Because the signing key is known in advance by the resolution client, the ds:KeyInfo element SHOULD be omitted from the digital signature.

35. The xrd:XRD/xrd:Query element MUST be present, and the value of this field MUST match the XRI authority subsegment requested by the client.

36. The xrd:XRD/xrd:ProviderID element MUST be present and its value MUST match the value of the xrd:XRD/xrd:Service/xrd:ProviderID element in an XRD advertising availability of trusted resolution service from this authority as required in section 5.3.5.
37. The xrd:XRD/saml:Subject/saml:NameID element MUST be present and equal to the xrd:XRD/xrd:Query element.
38. The NameQualifier attribute of the xrd:XRD/saml:Assertion/saml:Subject/saml:NameID element MUST be present and MUST be equal to the xrd:XRD/xrd:ProviderID element.
39. There MUST be exactly one saml:AttributeStatement present in the xrd:XRD/saml:Assertion element. It MUST contain exactly one saml:Attribute element with a Name attribute of “xri://$xrd*($v*2.0)”. This saml:Attribute element MUST contain exactly one saml:AttributeValue element whose text value is a URI reference to the xml:id attribute of the xrd:XRD element that is the immediate parent of the saml:Assertion element.

5.3.3 Lookahead Resolution

If a resolver requests trusted resolution of multiple authority subsegments (see section 5.1.5), the responding authority resolution service SHOULD attempt to perform trusted resolution on behalf of the resolver as described in this section. However if the resolution service is not able to obtain trusted XRDs for one or more additional lookahead subsegments, it SHOULD return only the trusted XRDs it has obtained and allow the resolver to continue.

5.3.4 Client Validation of XRDs
For each XRD returned as part of a trusted resolution request, the resolver MUST validate the XRD according to the rules defined in this section.

40. The xrd:XRD/saml:Assertion element MUST be present.

41. This assertion MUST valid per the processing rules described by [SAML].
42. The saml:Assertion MUST contain a valid enveloped digital signature as defined by [XMLDSig] and constrained by Section 5.4 of [SAML].

43. The signature MUST apply to the xrd:XRD element containing the signed SAML assertion. Specifically, the signature MUST contain a single ds:SignedInfo/ds:Reference element, and the URI attribute of this reference MUST refer to the xml:id attribute of the xrd:XRD element that is the immediate parent of the signed SAML assertion.

44. If the digital signature enveloped by the SAML assertion contains a ds:KeyInfo element, the resolver MAY reject the signature if this key does not match the signer’s expected key as specified by the ds:KeyInfo element present in the XRD Descriptor that was used to describe the current authority. See section 5.3.5.
45. The value of the xrd:XRD/xrd:Query element MUST match the subsegment whose resolution resulted in the current XRD.

46. The value of the xrd:XRD/xrd:ProviderID element MUST match the value of the xrd:XRD/xrd:Service/xrd:ProviderID element in any XRD advertising availability of trusted resolution service from this authority as required in section 5.3.5.
47. The value of the xrd:XRD/xrd:ProviderID element MUST match the value of the NameQualifier attribute of the xrd:XRD/saml:Assertion/saml:Subject/saml:NameID element.

48. The value of the xrd:XRD/xrd:Query element MUST match the value of the xrd:XRD/saml:Assertion/saml:Subject/saml:NameID element.

49. There MUST exist exactly one xrd:XRD/saml:Assertion/saml:AttributeStatment with exactly one saml:Attribute element that has a Name attribute of “xri://$xrd*($v*2.0)”. This saml:Attribute element must have exactly one saml:AttributeValue element whose text value is a URI reference to the xml:id attribute of the xrd:XRD element that is the immediate parent of the signed SAML assertion.

If any of the above requirements are not met for an XRD in the trusted resolution chain, the result MUST NOT be considered a valid trusted resolution response as defined by this specification. Note that this does not preclude a resolver from considering alternative resolution paths. For example, if an XRD advertising trusted resolution service has two or more xrd:XRD/xrd:Service/xrd:URI elements and the response from one service endpoint fails to meet the requirements above, the client MAY repeat the validation process using the second URI. If the second URI passes the tests, it MUST be considered a trusted resolution response as defined by this document and trusted resolution may continue.

5.3.5 Correlation of ProviderID and KeyInfo Elements

Each XRI authority participating in trusted authority resolution MUST be associated with at least one unique persistent service provider identifier expressed in the xrd:XRD/xrd:Service/xrd:ProviderID element of any XRD advertising trusted authority resolution service. This ProviderID value MUST NOT ever be reassigned to another XRI authority. A ProviderID may be any valid URI that meets these requirements of persistence and uniqueness. Examples of appropriate URIs include URNs as defined by [RFC2141] and fully persistent XRIs converted to URI-normal form as defined by [XRISyntax].

The purpose of ProviderIDs in XRI resolution is to enable resolvers to correlate the metadata in an XRD advertising trusted authority resolution service with the response received from a trusted resolution service endpoint. If the signed XRD response contains the same ProviderID as the XRD used to advertise a service, and the resolver has reason to trust the signature, the resolver can trust that the XRD response has not been maliciously replaced with another XRD.

There is no defined discovery process for the ProviderID for a community root authority; it must be published in the community root XRD (or other equivalent description document—see section 5.1.3) and verified independently. Once the community root XRD is known, the ProviderID for XRI authorties within this community MAY be discovered using the xrd:XRD/xrd:Service/xrd:ProviderID element for all resolution services offer by an authority. This trust mechanism may also be used for other services offered by this authority.
In addition, the metadata necessary for trusted authority resolution or other SAML [SAML] interactions MAY be discovered using the ds:KeyInfo element (section 3.2.) Again, if this element is present in an XRD advertising trusted authority resolution service (or any other service), and the client has reason to trust this XRD, the client MAY use the associated ProviderID to correlate the contents of this element with a signed response.

To assist resolvers in using this key discovery mechanism, it is important that trusted authority resolution services be configured to sign responses in such a way that the signature can be verified using the correlated ds:KeyInfo element. For more information, see [SAML].
6 Service Endpoint Selection
If the authority resolution phase is successful, the output is an XRDS document describing the final authority. An optional second phase of XRI resolution is processing of this XRDS document to select a requested service endpoint. (Note that in XRI proxy resolution, this service endpoint selection phase may be required. See section 7.) The successful output of this phase is an array of URIs representing the network address of the service endpoint.

This section specifies the rules for the service endpoint selection process.

6.1 Inputs

The XRI resolution parameters _xrd_t (Type) and _xrd_m (MediaType), defined in section 4.1, are used in the service endpoint selection phase. A third parameter, Path, is the path component of the QXRI, if present. All three parameters are optional. If a parameter is not present, its value MUST be considered null.
6.2 Processing Rules
Figure 3 shows the logical processing flow for service endpoint selection.

[image: image4.emf]No Services

selected?

Match Services by Type (see text)

Remove trailing

subsegment from Path

From selected Services, match by

Path (see text)

Branch to

Reference

Selection

Flowchart

Error [SEP not

found]

Resolve Ref to

new XRDS

document or error

Error?

Error?

No Services

selected?

Path = null?

No

Yes

Return URI array

Construct service endpoint URI(s)

according to “append” attribute

Yes

Yes

Yes

No

Yes

No

Select highest priority Service

1 Service

selected?

No

Yes

No

No

Input service endpoint

selection parameters

From selected Services, match by

MediaType (see text)

No Services

selected?

No

Yes

Figure 3: Service endpoint selection flowchart.

Following are the normative rules governing the service endpoint selection process:

50. Matching of xrd:XRD/xrd:Service elements using the Type, MediaType, and Path parameters MUST follow the rules defined in section 6.3.
51. If after applying the matching rules no service endpoint is selected, a resolver SHOULD perform reference processing as defined in section 8.

52. If after applying the matching rules more than one service endpoint is selected, the highest priority xrd:XRD/xrd:Service element MUST be selected as defined in section 3.3.3.

53. From the final selected xrd:XRD/xrd:Service element, the service endpoint URI(s) MUST be constructed as defined in section 6.4.

54. The resolver MUST return the final array of service endpoint URI
s in priority order, i.e., in order from highest priority to lowest priority of the source xrd:XRD/xrd:Service/xrd:URI elements as defined in section 3.3.3. When two or more service endpoint URIs have equal priority, they SHOULD be returned in random order.
6.3 Matching Rules

Matching of an xrd:XRD/xrd:Service element is controlled by three child elements, xrd:Type, xrd:MediaType, and xrd:Path, and their optional @xrd:match attribute.

6.3.1 Match Attribute Values

The following rules apply based on the value of the @xrd:match attribute:

55. If an @xrd:match attribute has a value of “none”, the parent xrd:XRD/xrd:Service element MUST NOT be matched regardless of any other elements or @xrd:match attribute values. This allows temporary deactivation of a service endpoint without removing it from the XRD.

56. If an xrd:Type, xrd:MediaType, or xrd:Path element is omitted, it MUST be considered equivalent to including an instance of the respective element with an @xrd:match attribute value of “default”.

57. If an xrd:Type, xrd:MediaType, or xrd:Path element is present but the @xrd:match attribute is omitted or has the default value of “content”, the content matching rules in the following three sections apply respectively.
58. For all other values of the @xrd:match attribute, the matching rules in section 3.3.4 apply.
59. If the @xrd:match attribute for an element is “only”, the parent xrd:XRD/xrd:Service element MUST be selected if there is a match on that element alone (all other matches on sibling elements can be ignored). For all other values of the @xrd:match attribute, the parent xrd:XRD/xrd:Service element MUST be selected only if there is a match on at least one xrd:Type child element AND at least one xrd:MediaType child element AND at least one xrd:Path child element (including their implied values as defined above).

6.3.2 Type Matching
The following rules apply when the @xrd:match attribute of an xrd:Type element is omitted, has the default value of “content”, or has a value of “only”.
60. The values of the Type parameter and the xrd:Type element SHOULD be normalized according to the requirements of their identifier scheme prior to input. In addition, if the value is an XRI or an IRI it MUST be in URI-normal form as defined in section 2.3 of [XRISyntax]. XRI resolvers MAY perform normalization of these values but MUST NOT be required to do so.

61. To match, the values MUST be equivalent according to the equivalence rules of the relevant identifier scheme.
6.3.3 Media Type Matching
The following rules apply when the @xrd:match attribute of an xrd:MediaType element is omitted, has the default value of “content”, or has a value of “only”.
62. The values of the MediaType parameter and the xrd:MediaType element SHOULD be normalized according to the rules for media types in section 3.7 of [RFC2616] prior to input. (The rules are that type and subtype names are case-insensitive, but parameter values may or may not be case-sensitive depending on the semantics of the parameter name.) XRI resolvers MAY perform normalization of these values but MUST NOT be required to do so.
63. To match, the values MUST be character-for-character equivalent.

6.3.4 Path Matching
The following rules apply when the @xrd:match attribute of an xrd:Path element is omitted, has the default value of “content”, or has a value of “only”.
64. The values of the Path parameter and the xrd:Path element MUST be normalized to remove any trailing space or XRI delimiter (“/”, “*”, or “!”).

65. Equivalence comparison MUST be case-insensitive.

66. If there is no match, comparison MUST be repeated after enclosing the Path parameter in parentheses. (This eliminates the need to specify multiple xrd:Path elements in order to match an XRI path that may or may not be expressed as a cross-reference.)
67. If there is no match, the final subsegment of the Path parameter (or the final segment if that segment contains only one subsegment) and its preceding delimiter MUST be removed and the comparision process repeated beginning with step 1. This enables stemming-based path matching.
6.4 Construction of Service Endpoint URIs
The final step in the service endpoint selection process is construction of the service endpoint URI(s). This is governed by the @xrd:append attribute of each xrd:XRD/xrd:Service/xrd:URI element. The values of this attribute are shown in Table 10.
	Value
	Component of QXRI to Append

	local
	The entire local part, i.e., one of three cases:

a) If only a path is present, append the path (including the leading “/”);

b) If only a query is present, append the query (including the leading “?”)
c) If both a path and a query are present, append the entire local part (including the leading “/”).

This is the default if the attribute is empty or omitted.

	path
	Path only (including the leading “/”).

	query
	Query only (including the leading “?”).

	qxri
	Entire QXRI (including the leading “xri://”).

	none
	None.

Table 10: Values of the append attribute and the corresponding QXRI component to append.
If the @xrd:append attribute is empty or omitted, it is equivalent to the default value of “local”. Following are the rules for construction of the service endpoint URI based on the value of the @xrd:append attribute.
68. If the value is “none”, the exact value of the xrd:XRD/xrd:Service/xrd:URI element MUST be returned directly.

69. For any other value, the exact value of the QXRI component specified in Table 10 including any leading delimiter(s) (and with no additional escaping or percent encoding) MUST be appended directly to the exact value of the xrd:XRD/xrd:Service/xrd:URI element including any trailing delimiter(s). If the QXRI component specified in Table 10 is null, then the exact value of the xrd:XRD/xrd:Service/xrd:URI element MUST be returned directly. This is important as it allows XRD authors precise control over construction of service endpoint URIs.
7 Proxy Resolution

This section defines a service for performing HTTP(S) proxy resolution of an entire XRI (both the authority segment and the local part) using the authority resolution protocol defined in section 5 and the service endpoint selection process defined in section 6. It also defines a standard syntax for expressing an XRI as an HTTP XRI, called an HXRI.
Proxy resolution may be used both to offload XRI resolution processing to shared HTTP(S) servers as well as to return an HTTP(S) redirect to clients such as browsers that have no native understanding of XRIs but can process HXRIs. This provides backwards compatability with the large installed base of existing HTTP clients.
7.1 Service Type and Media Type
The resolution service defined in this section is identified by the xrd:XRD/xrd:Service/xrd:Type element value “xri://$res*proxy*($v*2.0)”. It will accept either the xrd:XRD/xrd:Service/xrd:MediaType value “application/xrds+xml” or “application/xrds-saml+xml”.

It may appear to be of limited value to advertise proxy resolution service in an XRDS document if a resolver already needs to be able perform local XRI resolution in order to retrieve this XRDS document. However advertising a proxy resolution service in the XRDS document for a community root authority can be useful for applications that need to automatically generate HXRIs for resolution by non-XRI-aware clients in that community. Those applications may obtain the current HXRI prefix for proxy resolution from this source. See sections 5.1.3 and 7.2.
7.2 HXRIs

Definition of a standard syntax for expressing an XRI as an HTTP XRI (HXRI) has two benefits:

· It allows XRIs to be used anyplace an HTTP URI can appear, including in Web pages, electronic documents, email messages, instant messages, etc.

· It allows XRI-aware processors and search agents to recognize an HXRI and extract the embedded XRI for direct resolution, processing, and indexing.

To make this syntax as simple as possible for XRI-aware processors or search agents to recognize, an HXRI consists of a fully qualified HTTP or HTTPS URI authority segment that begins with the domain name “xri.”. The query XRI (QXRI) is then appended as the entire local path (and query component, if present.) In essence, the proxy resolver URI including the terminating forward slash serves as a machine-readable prefix for an absolute XRI.

The normative ABNF for an HXRI is defined below based on the XRI and ireg-name productions defined in [XRISyntax]:

HXRI
= proxy-resolver "/" QXRI

proxy-resolver
= ("http://" / "https://") proxy-reg-name

proxy-reg-name
= "xri." ireg-name

QXRI
= XRI
URI processors that recognize XRIs SHOULD interpret the local part of any HTTP or HTTPS URI that conforms to this ABNF as an XRI provided the domain name is at least three levels deep (e.g., “xri.example.com”.) If the URI conforms to this ABNF but the domain name is only two levels deep, URI processors SHOULD interpret the local part as an XRI only if the domain is known to offer XRI proxy resolution services. For a list of second-level domains that offer XRI proxy resolution services, see the XRI Technical Committee home page at http://www.oasis-open.org/committees/xri.
Publishers of XRIs that need to be understood by non-XRI-aware clients SHOULD publish them as HTTP URIs conforming to the HXRI production.

7.3 Input Parameters

Proxy resolution accepts the same XRI resolution input parameters as defined in section 4.1. Proxy resolvers MUST accept these as QXRI parameters as defined in section 4.2. In addition, a proxy resolver MUST also accept the _xrd_m parameter (MediaType) as the content type value of the HTTP Accept header in a proxy resolution request. If this parameter is supplied as both a QXRI parameter value and an HTTP Accept header value, the former takes precedence (even if the QXRI parameter value is explicitly null).
7.4 Protocol

Following are the normative requirements for proxy resolution:

70. The query XRI (QXRI) MUST be a valid XRI as specified in section 4.

71. The proxy resolution service MUST first perform authority resolution as defined in section 5, including lookahead authority resolution as defined in section 5.1.5.

72. If authority resolution is successful, proxy resolution follows the same rule governing return values as defined in section 5.1.2. In other words, if the values of the Type and Path parameters are null, and the value of the MediaType parameter is “application/xrds+xml” or “application/xrds-saml+xml”, the proxy resolution service MUST return the complete XRDS document using the requested media type to the client.
73. For any other set of input parameters, the proxy resolution service MUST select a service endpoint as defined in section 6 and then construct and return the highest priority service endpoint URI as defined in section 6.4. It MUST return this URI as an HTTP 3XX redirect with the Accept header content type set to the value of the MediaType parameter.
74. Unless the _xrd_n parameter is set to "True", the proxy resolution service MUST perform reference processing as defined in section 8. It MAY limit reference processing according to its local timeout or iteration limit policies.

75. If resolution is not successful, the proxy resolution service MUST return an error as defined in section 9.4.

76. Proxy resolvers are uniquely positioned to take advantage of caching and SHOULD use it to resolve the same XRIs or XRI components for multiple clients as defined in section 10.4.

7.5 Differences Between Proxy Resolution Servers

A proxy resolution request may be sent to any proxy resolution server that will accept it. All proxy resolution servers SHOULD attempt to deliver uniform responses given the same QXRI. However because proxy resolution servers are required to perform XRI resolution as a resolver, they must make decisions about priorities, reference processing, and trust policies on behalf of the client they are proxying. Since these decisions may be based on local policy or implementation, it is possible for different proxy resolution servers to return different results given the same QXRI.

8 Reference Processing

8.1 Synonyms
XRI resolution includes support for synonyms—XRIs that are not character-for-character equivalent, but which identify the same target resource. Three types of XRI synonyms may be expressed in XRDs:

· Local synonyms are expressed using the xrd:XRD/xrd:LocalID element. A local synonym is an XRI that is interchangeable with the query XRI, i.e., it is assigned by the same authority and identifies the same target resource as the current XRD (this authority is identified by the xrd:XRD/xrd:ProviderID element of the XRD—see section 3.2.) A common example is a persistent XRI assigned to a resource that has one or more reassignable XRIs. Resolution of a local synonym MUST return the same XRD as the query XRI (except for the value of the xrd:XRD/xrd:Query, xrd:XRD/xrd:Expires, and xrd:XRD/xrd:LocalID elements).
· Canonical synonyms are expressed using the xrd:XRD/xrd:CanonicalID element. A canonical synonym is the preferred absolute XRI among all absolute XRI synonyms for a resource (in the context of the authority providing the current XRD). This XRI may or may not be assigned by the same authority providing the current XRD, and if resolvable may or may not resolve to the current XRD. For durability, a canonical synonym SHOULD be a persistent XRI. For simplicity, a resource SHOULD be assigned only one canonical synonym, however in certain circumstances (such as merging two previously distinct resources into one resource), this may not be possible.

· References are expressed using the xrd:XRD/xrd:Ref element. In XRI resolution, a reference is an absolute XRI that identifies the same target resource as the query XRI but which is assigned by a different authority than the authority providing the current XRD and which MAY resolve to a different XRD than the current XRD, i.e., an XRD containing different synonyms, service endpoints, or other metadata describing the target resource. (Note that such an XRD MAY also include a reference back to the current query XRI, in which case the references will be circular.)

Of these three synonym types, references play a special role in XRI resolution. In both authority resolution and service endpoint selection, if the current XRD does not contain a desired xrd:XRD/xrd:Service element but contains at least one xrd:XRD/xrd:Ref element, a resolver may follow these reference(s) according to the rules defined in this section.
8.2 Processing Rules
Figure 4 is an overview of the logical flow of selecting an XRI reference for processing.

[image: image5.emf]Begin

Reference

Selection

Selection = null?

From current XRD,

select next highest

priority Ref

Return Ref to

calling

flowchart

Invalid Ref?

No

No

No

Yes

Yes

Ref = any

previous Ref in

this resolution

chain?

Yes

Fail any

input processing

rules?

No

Yes

Return Error

to calling

flowchart

Figure 4: Flowchart for selecting an XRI reference for processing.

Following are the normative rules that apply to reference processing:

77. The resolver MUST begin by selecting the highest priority xrd:XRD/xrd:Ref element in the current XRD. If not found, this is an error and the resolver MUST proceed as defined in section 5 for authority resolution or section 6 for service endpoint selection.

78. The contents of the selected xrd:XRD/xrd:Ref element MUST be a valid absolute XRI as defined in [XRISyntax]. If not, it MUST be ignored and step 1 repeated to select the next highest priority reference.

79. The contents of the selected xrd:XRD/xrd:Ref element MUST NOT be an XRI that has been followed previously in the chain of resolution requests that began with the original query XRI. If so, it MUST be ignored and step 1 repeated to select the next highest priority reference. This prevents circular references.

80. The contents of the selected xrd:XRD/xrd:Ref element MUST meet the input processing rules defined in section 4. If not, it MUST be discarded and step 1 repeated to select the next highest priority reference.

81. Once a valid reference has been selected, the resolver MUST begin resolution of a new XRDS document beginning starting with the community root authority of the reference XRI as defined in section 5.1.2. For reference processing to complete successfully, the resolver MUST complete resolution of all authority subsegments in the reference (including following any further references if necessary). If the reference XRI includes a local path and/or query component, the resolver MUST also complete selection of a service endpoint as defined in section 6. In this case the highest priority service endpoint URI returned as defined in section 6.4 is the new authority resolution service endpoint URI.

82. If step 5 results in a complete XRDS document whose final XRD contains at least one instance of the next requested service endpoint prior to commencement of reference processing, the resolver MUST include this XRDS document nested inside the parent XRDS document as defined in section 8.3.
83. If the nested XRDS document in step 6 includes an XRD whose xrd:XRD/xml:id attribute value matches the xrd:XRD/xml:id attribute value of any previous XRD in the chain of resolution requests that began with the original query XRI, the resolver MUST replace this XRD with an empty XRD element and set its xrd:XRD/xml:idref attribute value to the value of the xrd:XRD/xml:id attribute of the matched XRD element. This prevents conflicting xrd:XRD/xml:id values.

8.3 Nesting XRDS Documents

If an XRI reference is followed successfully, it will produce an XRDS document that fully describes the reference. This XRDS document MUST be included in the containing XRDS document immediately following the xrd:XRD element that contains the xrd:XRD/xrd:Ref element being followed. In addition, the xrds:XRDS/@xrds:ref attribute of this nested XRDS document MUST be set to the value of the xrd:XRD/xrd:Ref element it describes.

This allows a consuming application to verify the complete chain of XRDs obtained to resolve the original XRI even if resolution traverses multiple references. Note that nested XRDS documents do not include an XRD for the community root subsegment of a reference as this is part of the configuration of the resolver

In the following example the original query XRI is “xri://@a*b*c”. The XRD for “xri://@a*b” does not contain an authority resolution service endpoint but includes a reference to “xri://@x*y”. The elements and attributes specific to reference processing are shown in bold.
<XRDS xmlns="xri://$xrds" ref="xri://@a*b*c">

<xrd:XRD xmlns:xrd="xri://$xrd*($v*2.0)">

<xrd:Query>*a</xrd:Query>

...

<xrd:Service>

<xrd:Type>xri://$res*auth*($v*2.0)</xrd:Type>

<xrd:URI>http://a.example.com</xrd:URI>

</xrd:Service>

</xrd:XRD>

<xrd:XRD>

<xrd:Query>*b</xrd:Query>

...

<xrd:Ref>xri://@x*y</xrd:Ref>

<xrd:Service>

...no authority resolution service endpoint...

</xrd:Service>

</xrd:XRD>

<XRDS ref="xri://@x*y">

<xrd:XRD xml:id="xrd-345678">

<xrd:Query>*x</xrd:Query>

...

<xrd:Service>

<xrd:Type>xri://$res*auth*($v*2.0)</xrd:Type>

<xrd:URI>http://x.example.com</xrd:URI>

</xrd:Service>

</xrd:XRD>

<xrd:XRD xml:id="xrd-456789">

<xrd:Query>*y</xrd:Query>

...

<xrd:Service>

<xrd:Type>xri://$res*auth*($v*2.0)</xrd:Type>

<xrd:URI>http://y.example.com</xrd:URI>

</xrd:Service>

</xrd:XRD>

</XRDS>

<xrd:XRD xml:id="xrd-876543">

<xrd:Query>*c</xrd:Query>

...

<xrd:Service>

...final service endpoints described here...

</xrd:Service>

</xrd:XRD>

</XRDS>
9 Error Processing
9.1 Error Codes

XRI resolution error codes generally follow the HTTP model. They are broken into three categories:

· 1XX: Success. These codes indicate
· 2XX: Permanent errors

· 3XX: Temporary errors

	Code
	Symbolic Error
	Phase(s)
	Description

	100
	SUCCESS
	Any
	Operation was successful

	
	
	
	

	200
	PERM_FAIL
	Any
	Generic permanent failure

	201
	UNKNOWN_ROOT
	Authority resolution
	Community root specified in QXRI is not configured in the resolver

	
	
	
	

	202
	LIMIT_EXCEEDED
	Authority resolution
	This error code represents a locally configured resource limit being exceeded. Examples: number of references to follow, number of XRD elements that can be handled, size of an XRDS document.

	
	
	
	

	203
	AUTH_RES_NOT_FOUND
	Authority resolution
	The subsegment cannot be resolved due to missing authority resolution service in the parent XRD.

	204
	QUERY_NOT_FOUND
	Authority resolution
	Responding authority does not have an XRI matching the query

	
	
	
	

	205
	UNEXPECTED_XRD
	Authority resolution
	Value of the xrd:Query element does not match the subsegment requested

	206
	UNVERIFIED_SIGNATURE
	Trusted authority resolution
	Signature verification failed.

	207
	INVALID_INPUT
	Input
	Generic input error

	208
	INVALID_XRI
	Input
	Input QXRI does not conform to XRI syntax

	209
	INVALID_TYPE
	Input
	Input Service Type is invalid

	210
	INVALID_MEDIA_TYPE
	Input
	Input Media Type is invalid

	211
	SERVICE_NOT_FOUND
	Service endpoint selection
	The specified service could not be found in the current XRD or via reference processing

	300
	TEMPORARY_FAIL
	Any
	Generic temporary failure

	301
	NETWORK_ERROR
	Authority resolution
	Generic error during authority resolution phase (includes uncaught exception, system error, network error)

	302
	UNEXPECTED_RESPONSE
	Authority resolution
	When querying an authority resolution service, the server returned a non-200 HTTP status

	303
	INVALID_XRDS
	Authority resolution
	Invalid XRDS received from an authority resolution server (includes malformed XML, truncated content, or wrong Content-type.)

	304
	TIMEOUT_ERROR
	Any
	Application-defined timeout limit has lapsed during an operation (e.g. network latency).

9.2 Error Messages

[TODO – Steve has expressed strong opinions about this section, so he’s nominated to draft the text. Steve, let's talk on the phone about how what you would draft here would differ from the second column of the table above.]

9.3 Error Handling in Lookahead Resolution
In lookahead resolution, defined in section 5.1.5, an authority resolution service acts as a resolver of other authority resolution service endpoints. If in this capacity as a intermediary resolver the authority resolution service receives an error, it MUST return a valid XRDS document to the originating client resolver. This XRDS document MUST contain xrd:XRD elements for all subsegments successfully resolved or retrieved from cache by the authority resolution service plus a final xrd:XRD element describing the query that produced the error. In this final xrd:XRD element the xrd:XRD/xrd:Status@xrd:code attribute MUST be set to the applicable error code defined in section 9.1 and the value of the xrd:XRD/xrd:Status element SHOULD be set to an appropriate error message as defined in section 9.2.
9.4 Error Handling in Proxy Resolution

In proxy resolution, defined in section 7, an HTTP(S) server acts as a resolver to query other authority resolution service endpoints. If it encounters an error in its role as an intermediary resolver, it MUST return the appropriate error code as follows:

· If the values of the Type and Path parameters are null, and the value of the MediaType parameter is “application/xrds+xml” or “application/xrds-saml+xml”, the proxy resolution service MUST return the error message in a valid XRDS document as described in section 9.3.

· For any other set of input values, the proxy resolution service MUST return the error code and error message string defined in sections 9.1 and 9.2 as plain text with the media type “text/plain”.
The proxy resolution service MAY also return additional error information in plain text.
10 Use of HTTP(S)

10.1 HTTP Errors

When a resolver encounters fatal HTTP(S) errors during the resolution process, it MUST return the appropriate XRI resolution error code and error message as defined in section 9. In this way calling applications do not have to deal separately with XRI and HTTP error messages.

10.2 HTTP Headers

10.2.1 Caching

The HTTP caching capabilities described by [RFC2616] should be leveraged for all types of XRI resolution service. Specifically, implementations SHOULD implement the caching model described in section 13 of [RFC2616], and in particular, the “Expiration Model” of section 13.2, as this requires the fewest round-trip network connections.

All XRI resolution servers SHOULD send the Cache-Control or Expires headers in their responses per section 13.2 of [RFC2616] unless there are overriding security or policy reasons to omit them.

Note that HTTP Cache headers SHOULD NOT conflict with expiration information in an XRD. That is, the expiration date specified by HTTP caching headers SHOULD NOT be later than any of the expiration dates for any of the xrd:XRD/xrd:Expires elements returned in the HTTP response. This implies that lookahead and proxy resolvers SHOULD compute the “soonest” expiration date for the XRDs in a resolution chain and ensure a later date is not specified by the HTTP caching headers for the HTTP response.
10.2.2 Location

During HTTP interaction, “Location” headers may be present per [RFC2616] (i.e., during 3XX redirects). Redirects SHOULD be made cacheable through appropriate HTTP headers, as specified in section 10.2.1.

10.2.3 Content-Type

For authority resolution, the “Content-type” header in the 2XX responses MUST contain the value “application/xrds+xml” or “application/xrds-saml+xml” specifying that the content is a generic XRD (section 5.1) or a trusted XRD (section 5.3) respectively.

Following service endpoint selection, clients and servers MAY negotiate content type using standard HTTP content negotiation features. Regardless of whether this feature is used, however, the server MUST respond with an appropriate media type in the “Content-type” header if the resource is found and an appropriate content type is returned.

10.3 Other HTTP Features

HTTP provides a number of other features including transfer-coding, proxying, validation-model caching, and so forth. All these features may be used insofar as they do not conflict with the required uses of HTTP described in this document.

10.4 Caching and Efficiency

In addition to HTTP-level caching, resolution clients are encouraged to perform caching at the application level. For best results, however, resolution clients SHOULD be conservative with caching expiration semantics, including cache expiration dates. This implies that in a series of HTTP redirects, for example, the results of the entire process SHOULD only be cached as long as the shortest period of time allowed by any of the intermediate HTTP responses.

Because not all HTTP client libraries expose caching expiration to applications, identifier authorities SHOULD NOT use cacheable redirects with expiration times sooner than the expiration times of other HTTP responses in the resolution chain. In general, all XRI deployments should be mindful of limitations in current HTTP clients and proxies.

The cache expiration time of an XRD may also be explicitly limited by the identifier authority. If the expiration time in xrd:XRD/xrd:Expires is sooner than the expiration time calculated from the HTTP caching semantics, the XRD MUST be discarded before the expiration time in xrd:XRD/xrd:Expires. Note also that the SAML assertion used in trusted resolution (section 5.3) may cause invalidation
of a XRD even before HTTP caching semantics or the xrd:XRD/xrd:Expires element.

With both application-level and HTTP-level caching, the resolution process is designed to have minimal overhead. Resolution of each qualified subsegment of an XRI authority segment is a separate step described by a separate XRD, so intermediate results can typically be cached in their entirety. For this reason, resolution of higher-level (i.e., further to the left) qualified subsegments, which are common to more identifiers, will naturally result in a greater number of cache hits than resolution of lower-level subsegments.

11 Extensibility and Versioning

11.1 Extensibility

11.1.1 Extensibility of XRDs
The XRD schema in Appendix A use an an open-content model that is designed to be extended with other metadata. In most places, extension elements and attributes from namespaces other than “xri://$xrd*($v*2.0)” are explicitly allowed. These extension points are designed to simplify default processing using a “Must Ignore” rule. The base rule is that unrecognized elements and attributes, and the content and child elements of unrecognized elements, MUST be ignored. As a consequence, elements that would normally be recognized by a processor MUST be ignored if they appear as descendants of an unrecognized element.

Extension elements MUST NOT require new interpretation of elements defined in this document. If an extension element is present, a processor MUST be able to ignore it and still correctly process the XRD document.

Extension specifications MAY simulate “Must Understand” behavior by applying an “enclosure” pattern. Elements defined by the XRD schema in Appendix A whose meaning or interpretation is modified by extension elements can be wrapped in a extension container element defined by the extension specification. This extension container element SHOULD be in the same namespace as the other extension elements defined by the extension specification.
Using this design, all elements whose interpretations are modified by the extension will now be contained in the extension container element that will be ignored by clients or other applications unable to process the extension. The following example illustrates this pattern using an extension container element from an extension namespace (“other:SuperService”) that contains an extension element (“other:ExtensionElement”):
<XRD>

 <other:SuperService>

 <Service>
 …
 <other:ExtensionElement>…</other:ExtensionElement>

 </Service>
 </other:SuperService>

 <Service>

 …
 </Service>

</XRD>

In this example, the other:ExtensionElement modifies the interpretation or processing rules for the parent xrd:Service element and therefore must be understood by the consumer for the proper interpretation of the parent xrd:Service element. To preserve the correct interpretation of the xrd:Service element in this context, the xrd:Service element is “wrapped” so only consumers that understand elements in the other:SuperService namespace will attempt to process the xrd:ProviderID element
.
11.1.2 Other Points of Extensibility

The use of HTTP and XML in the design of XRDS documents, XRD elements, and the XRI resolution framework provides additional specific points of extensibility:

· Specification of new resolution service types or other service types using XRIs, IRIs, or URIs as values of the xrd:XRD/xrd:Service/xrd:Type element.

· HTTP negotiation of content types, language, encoding, etc.

· Use of HTTP redirects (3XX) or other response codes defined by [RFC2616].

· Use of cross-references within XRIs, particularly for associating new types of metadata with a resource.

11.2 Versioning

Versioning of the XRI specification set is expected to occur infrequently. Should it be necessary, this section describes versioning guidelines.

11.2.1 Version Numbering

Specifications from the OASIS XRI Technical Committee use a Major and Minor version number expressed in the form Major.Minor. The version number MajorB.MinorB is higher than the version number MajorA.MinorA if and only if:
MajorB > MajorA OR ((MajorB = MajorA) AND MinorB > MinorA)

11.2.2 Versioning of the XRI Resolution Specification

New releases of the XRI Resolution specification may specify changes to the resolution protocols and/or the XRD schema in Appendix A. When changes affect either of these, the resolution service type version number will be changed. Where changes are purely editorial, the version number will not be changed.
In general, if a change is backward-compatible, the new version will be identified using the current major version number and a new minor version number. If the change is not backward-compatible, the new version will be identified with a new major version number.

11.2.3 Versioning of XRDs

The xrd:XRDS document element is intended to be a completely generic container, i.e., to have no specific knowledge of the elements it may contain. Therefore it has no version element, and can remain stable indefinitely as there is no need to version its namespace.

The xrd:XRD element has an optional version attribute. When used, the value of this attribute MUST be the version value of the XRI Resolution specification to which its containing elements conform.

When new versions of the XRI Resolution specification are released, the namespace for the XRD schema may or may not be changed. If there is a major version number change, the namespace for the xrd:XRD schema is likely to change. If there is only a minor version number change, the namespace for the xrd:XRD schema may remain unchanged.

In general, maintaining namespace stability and adding to or changing the content of a schema are competing goals. While certain design strategies can facilitate such changes, it is difficult to predict how existing implementations will react to any given change, making forward compatibility difficult to achieve. Nevertheless, the right to make such changes in minor revisions is reserved. Except in special circumstances (for example, to correct major deficiencies or to fix errors), implementations should expect forward-compatible schema changes in minor revisions, allowing new messages to validate against older schemas.

Implementations SHOULD expect, and be prepared to deal with, new extensions and message types in accordance with the processing rules laid out for those types. Minor revisions may introduce new types that leverage the extension facilities described in section 11.1. Older implementations SHOULD reject such extensions gracefully when they are encountered in contexts with specific semantic requirements.

11.2.4 Versioning of Protocols

The protocols defined in this document may also be versioned by future releases of the XRI Resolution specification. If these protocols are not backward-compatible with older implementations, they will be assigned a new XRI for use in identifying their service type in XRDs. See section 2.1.2.

Note that it is possible for version negotiation to happen in the protocol itself. For example, HTTP provides a mechanism to negotiate the version of the HTTP protocol being used. If and when an XRI resolution protocol provides its own version-negotiation mechanism, the specification is likely to continue to use the same XRI to identify the protocol as was used in previous versions of the XRI Resolution specification.

12 Security and Data Protection

Significant portions of this specification deal directly with security issues, and these will not be summarized again here. In addition, basic security practices and typical risks in resolution protocols are well-documented in many other specifications. Only security considerations directly relevant to XRI resolution are included here.

12.1 DNS Spoofing
As the specified resolution mechanism is dependent on DNS
, the accuracy of the XRI resolution response is dependent on the accuracy of the original DNS query. When trustworthy, unambiguous, authoritative responses are required, the trusted resolution protocol defined by this specification is recommended. Resolution results obtained using this protocol can be evaluated independently of DNS resolution results. While this does not solve the problem of DNS spoofing, it does allow the client to detect an error condition and reject the resolution result as untrustworthy. For environments that require higher confidence in the result of DNS resolution, DNSSEC [DNSSEC] is recommended as a supplement to trusted resolution as defined by this specification.
12.2 HTTP Security

Many of the security considerations set forth in HTTP/1.1 [RFC2616] apply to XRI Resolution protocols defined here. In particular, confidentiality of the communication channel is not guaranteed by HTTP. Server-authenticated HTTPS should be considered in cases where confidentiality of resolution requests and responses is desired.

Special consideration should be given to proxy and caching behaviors to ensure accurate and reliable responses from resolution requests. For various reasons, network topologies increasingly have transparent proxies, some of which may insert VIA and other headers as a consequence, or may even cache content without regard to caching policies set by a resource’s HTTP authority.

Implementations of XRI Proxies and caching authorities should also take special note of the security recommendations in HTTP/1.1 [RFC2616] section 15.7

12.3 Caching Authorities

In addition to traditional HTTP caching proxies, XRI resolution authority proxies may be a part of the resolution topology. Such proxies should take special precautions against cache poisoning, as these caching entities may represent trust decision points within a deployment’s resolution architecture.

12.4 Lookahead and Proxy Resolution

During proxy resolution, some or all of an XRI is provided to the proxy resolver. During lookahead resolution, subsegments of the XRI authority segment for which the resolving network endpoint is not authoritative may be revealed to that service endpoint.

In both cases, privacy considerations should be evaluated before disclosing such information.

12.5 SAML Considerations

Trusted resolution must adhere to the rules defined by the SAML 2.0 Core Specification. Particularly noteworthy are the XML Transform restrictions on XML Signature defined in SAML and the enforcement of the SAML Conditions element regarding the validity period.

12.6 Community Root Authorities
The XRI authority information for a community root needs to be well-known to the clients that request resolution within that community. For trusted resolution, this includes the URIs, the xrd:XRD/xrd:ProviderID, and the ds:KeyInfo information. An acceptable means of providing this information is for the community root authority to produce a self-signed XRD and publish it to a server-authenticated HTTPS endpoint. Special care should be taken to ensure the correctness of such an XRD; if this information is incorrect, an attacker may be able to convince a client of an incorrect result during trusted resolution.

12.7 Denial-Of-Service Attacks

XRI Resolution, including trusted resolution, is vulnerable to denial-of-service (DOS) attacks typical of systems relying on DNS and HTTP.

12.8 Limitations of Trusted Resolution

While the trusted resolution protocol specified in this document provides a way to verify the integrity of a successful XRI resolution, it does not provide a way to verify the integrity of a resolution failure. Reasons for this limitation include the prevalence of non-malicious network failures, the existence of denial-of-service attacks, and the ability of a man-in-the-middle attacker to modify HTTP responses when resolution is not performed over HTTPS.

Additionally, there is no revocation mechanism for the keys used in trusted resolution. Therefore, a signed resolution's validity period should be limited appropriately to mitigate the risk of an incorrect or invalid resolution.

13 References

13.1 Normative

[DNSSEC]
D. Eastlake, Domain Name System Security Extensions, http://www.ietf.org/rfc/rfc2535, RFC 2535, March 1999.

[RFC2046]
N. Borenstein, N. Freed, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, http://www.ietf.org/rfc/rfc2046.txt, RFC 2046, November 1996.

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, RFC 2119, March 1997.

[RFC2141]
R. Moats, URN Syntax, http://www.ietf.org/rfc/rfc2141.txt, IETF RFC 2141, May 1997.

[RFC2483]
M. Meallling, R. Daniel Jr., URI Resolution Services Necessary for URN Resolution, http://www.ietf.org/rfc/rfc2483.txt, RFC 2483, January 1999.
[RFC2616]
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Hypertext Transfer Protocol -- HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt, RFC 2616, June 1999.

[SAML]
S. Cantor, J. Kemp, R. Philpott, E. Maler, Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0, http://www.oasis-open.org/committees/security, March 2005.
[UUID]
Open Systems Interconnection – Remote Procedure Call, ISO/IEC 11578:1996, http://www.iso.org/, August 2001.
[XML]
T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau, Extensible Markup Language (XML) 1.0, Third Edition, World Wide Web Consortium, http://www.w3.org/TR/REC-xml/, February 2004.
[XMLDSig]
D. Eastlake, J. Reagle, D. Solo et al., XML-Signature Syntax and Processing, World Wide Web Consortium, http://www.w3.org/TR/xmldsig-core/, February, 2002.

[XMLID]
J. Marsh, D. Veillard, N. Walsh, xml:id Version 1.0, World Wide Web Consortium, http://www.w3.org/TR/2005/REC-xml-id-20050909, September 2005.
[XMLSchema]
H. Thompson, D. Beech, M. Maloney, N. Mendelsohn, XML Schema Part 1: Structures Second Edition, World Wide Web Consortium, http://www.w3.org/TR/xmlschema-1/, October 2004.
[XRIMetadata]
D. Reed, Extensible Resource Identifier (XRI) Metadata V2.0, http://docs.oasis-open.org/xri/xri/V2.0/xri-metadata-V2.0-cd-01.pdf, March 2005.
[XRISyntax]
D. Reed, D. McAlpin, Extensible Resource Identifier (XRI) Syntax V2.0, http://docs.oasis-open.org/xri/xri/V2.0/xri-syntax-V2.0-cd-01.pdf, March 2005.
13.2 Informative

[REST]
http://internet.conveyor.com/RESTwiki/moin.cgi/FrontPage
[XRIIntro]
D. Reed, D. McAlpin, Introduction to XRIs, http://docs.oasis-open.org/xri/xri/V2.0/xri-intro-V2.0.pdf, Work-In-Progress, March 2005.
[XRIGuide]
[Editors here], XRI Implementer's Guide v2.0, [link here], Work-In-Progress, October 2005.
[XRIReqs]
G. Wachob, D. Reed, M. Le Maitre, D. McAlpin, D. McPherson, Extensible Resource Identifier (XRI) Requirements and Glossary v1.0, http://www.oasis-open.org/apps/org/workgroup/xri/download.php/2523/xri-requirements-and-glossary-v1.0.doc, June 2003.

Appendix A. XML Schema for XRDS and XRD (Normative)

[TODO – Updating of schemas based on updated text.]

[Open Issues in the XRD schema: 1) we need to determine the correct way to specify use of the xml:id attribute, 2) we need to confirm that Gabe’s extensibility pattern has been correctly applied throughout.]

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="xri://$xrds" elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xrds="xri://$xrds">

<!-- Utility patterns -->

<xs:attributeGroup name="otherattribute">

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:attributeGroup>

<xs:group name="otherelement">

<xs:choice>

<xs:any namespace="##other" processContents="lax"/>

<xs:any namespace="##local" processContents="lax"/>

</xs:choice>

</xs:group>

<!-- Patterns for elements -->

<xs:element name="XRDS">

<xs:complexType>

<xs:sequence>

<xs:group ref="xrds:otherelement" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attributeGroup ref="xrds:otherattribute"/>

<xs:attribute name="ref" type="xs:anyURI" use="optional"/>

</xs:complexType>

</xs:element>

</xs:schema>
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="xri://$xrd*($v*2.0)" elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xrd="xri://$xrd*($v*2.0)">

<!-- Utility patterns -->

<xs:attributeGroup name="otherattribute">

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:attributeGroup>

<xs:group name="otherelement">

<xs:choice>

<xs:any namespace="##other" processContents="lax"/>

<xs:any namespace="##local" processContents="lax"/>

</xs:choice>

</xs:group>

<xs:complexType name="URIpattern">

<xs:simpleContent>

<xs:extension base="xs:anyURI">

<xs:attributeGroup ref="xrd:otherattribute"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="Stringpattern">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attributeGroup ref="xrd:otherattribute"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<!-- Patterns for elements -->

<xs:element name="XRD">

<xs:complexType>

<xs:sequence>

<xs:element ref="xrd:Query" minOccurs="0"/>

<xs:element ref="xrd:Status" minOccurs="0"/>

<xs:element ref="xrd:Expires" minOccurs="0"/>

<xs:element ref="xrd:Synonym" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="xrd:Ref" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="xrd:ProviderID" minOccurs="0"/>

<xs:element ref="xrd:Service" minOccurs="0" maxOccurs="unbounded"/>

<xs:group ref="xrd:otherelement" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute ref="xrd:id"/>

<xs:attribute ref="xrd:version"/>

<xs:attributeGroup ref="xrd:otherattribute"/>

</xs:complexType>

</xs:element>

<xs:element name="Query" type="xrd:Stringpattern"/>

<xs:element name="Status">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xrd:Stringpattern">

<xs:attribute name="code" type="xs:int" use="required"/>

<xs:attributeGroup ref="xrd:otherattribute"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="Expires">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:dateTime">

<xs:attributeGroup ref="xrd:otherattribute"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="Synonym" type="xrd:URIpattern"/>

<xs:element name="Ref" type="xrd:URIpattern"/>

<xs:element name="ProviderID" type="xrd:URIpattern"/>

<xs:element name="Service">

<xs:complexType>

<xs:sequence>

<xs:element ref="xrd:Type" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="xrd:Path" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="xrd:MediaType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="xrd:URI" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="xrd:ProviderID" minOccurs="0"/>

<xs:group ref="xrd:otherelement" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attributeGroup ref="xrd:otherattribute"/>

</xs:complexType>

</xs:element>

<xs:element name="Type" type="xrd:URIpattern"/>

<xs:element name="MediaType" type="xrd:Stringpattern"/>

<xs:element name="Path" type="xrd:Stringpattern"/>

<xs:element name="URI" type="xrd:URIpattern"/>

<xs:attribute name="priority" type="xs:nonNegativeInteger"/>

<xs:attribute name="version" type="xs:string" fixed="2.0"/>

<xs:attribute name="id" type="xs:ID"/>

</xs:schema>

Appendix B. RelaxNG Compact Syntax Schema for XRDS and XRD (Informative)

[Need new version in RelaxNG format.]
Appendix C. Acknowledgments

The editors would like to acknowledge the contributions of the OASIS XRI Technical Committee, whose voting members at the time of publication were:

· Geoffrey Strongin, Advanced Micro Devices

· Ajay Madhok, AmSoft Systems

· Jean-Jacques Dubray, Attachmate

· William Barnhill, Booz Allen and Hamilton

· Drummond Reed, Cordance Corporation

· Marc Le Maitre, Cordance Corporation

· Dave McAlpin, Epok

· Loren West, Epok

· Peter Davis, NeuStar

· Masaki Nishitani, Nomura Research

· Nat Sakimura, Nomura Research

· Tetsu Watanabe, Nomura Research

· Owen Davis, PlaNetwork
· Victor Grey, PlaNetwork
· Fen Labalme, PlaNetwork
· Mike Lindelsee, Visa International

· Gabriel Wachob, Visa International

· Dave Wentker, Visa International

· Bill Washburn, XDI.ORG

The editors also would like to acknowledge the following people for their contributions to previous versions of the OASIS XRI specifications (affiliations listed for OASIS members):
Thomas Bikeev, EAN International; Krishna Sankar, Cisco; Winston Bumpus, Dell; Joseph Moeller, EDS; Steve Green, Epok; Lance Hood, Epok; Adarbad Master, Epok; Davis McPherson, Epok; Chetan Sabnis, Epok; Phillipe LeBlanc, GemPlus; Jim Schreckengast, Gemplus; Xavier Serret, Gemplus; John McGarvey, IBM; Reva Modi, Infosys; Krishnan Rajagopalan, Novell; Tomonori Seki, NRI; James Bryce Clark, OASIS; Marc Stephenson, TSO; Mike Mealling, Verisign; Rajeev Maria, Visa International; Terence Spielman, Visa International; John Veizades, Visa International; Lark Allen, Wave Systems; Michael Willett, Wave Systems; Matthew Dovey; Eamonn Neylon; Mary Nishikawa; Lars Marius Garshol; Norman Paskin; Bernard Vatant.
· A special acknowledgement to Jerry Kindall (Epok) for a full editorial review.

Appendix D. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights.

Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS President.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS President.

Copyright © OASIS Open 2006. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

�Open Issue: are we still going to produce this?

�Editorial: confirm that we don't want to show the namespace prefix "xrd:" everywhere in the example below.

�I’m surprised by the value of the Name attribute – has this changed recently?

�Open Issue: Should we have a separate error code for ref-not-followed during SEP selection?

�Open Issue: Discuss Steve’s suggestion about returning CanonicalID and alternative of building it into SEP URIs.

�Open Issue: Gabe notes that in XRI paths are case-sensitive but this seems appropriate for SEP matching purposes.

�Open Issue: Do we need a status code for timeout or "too many iteration" errors?

�Open issue: this allows an XRI to specify a service endpoint of a different type than "$res*auth". Do we want to allow this?

�TODO

�Is plain text the best choice or should this be HTML? Or should we specify the format more specifically? Applications may be using proxy resolution to get a 3xx redirect back and need to process programmatically for an error.

�Maybe reword to say that a client may choose to use the XRD even if the signature is expired, when not using Trusted Resolution (ie there is no requirement that a client look for the SAML expires header if it is not doing trusted resolution and just happens to get back a SAML assertion anyway).

�Need to confirm that this will be legal because it has extension elements mixed with XRD-defined elements.

�I’d add a para emphasizing that signatures must still be verified across unrecognized elements. (This is implied, but is probably worth stating).

�Much of this language came pretty directly from the SAML specs and we should credit them somehow for this.

�Its only dependent on DNS if you use HTTP URIs that use DNS. This is by no means required and in many situations DNS will in fact NOT be used. DNS is only being used to map a DNS name to IP, not in any extended manner to discover or retrieve metadata or anything else. This should be worded that IF the resolver community (or whatever we call it now) chooses to deploy service URIs with DNS, then XYZ issues with DNS follow…

�TOD

�OPEN ISSUE

�TO DO - Needs updating.

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 56
2
xri-resolution-V2.0-wd-10-ed-06

22 February 2006

Copyright © OASIS Open 2006. All Rights Reserved.

Page 41 of 56

_1201693442.vsd
The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.

Begin Authority Resolution

Request XRDS document

Construct Next Authority URI

Error?

No

Yes

Next highest priority URI?

No

Next highest priority authority resolution service?

Yes

No

Yes

Select highest priority Service

Select Services where Type =  “xri://$res*auth*($v*2.0)” and MediaType = value of _xrd_a parameter

More authority subsegments?

No Services selected?

Select highest priority URI

Error [network or database error]

Return current XRDS document

1 Service selected?

No

Yes

Branch to  Reference Selection Flowchart

No

Error [no valid ref]

Resolve Ref to new XRDS document or error

Yes

Error?

Yes

Error?

Return current XRDS document

Yes

No

Yes

No

This is a recursive call; if successful it results in a nested XRDS document

_xrd_n parameter = True?

Set Status Code = [no follow ref]

No

Yes

No

_1202031383.vsd
Input service endpoint selection parameters

Branch to  Reference Selection Flowchart

No Services selected?

Match Services by Type (see text)

No Services selected?

Remove trailing subsegment from Path

Path = null?

From selected Services, match by Path (see text)

No

Yes

Error [SEP not found]

Resolve Ref to new XRDS document or error

Error?

Error?

1 Service selected?

From selected Services, match by MediaType (see text)

No Services selected?

No

No

Yes

No

Construct service endpoint URI(s) according to “append” attribute

Yes

Yes

Select highest priority Service

Yes

Return URI array

No

Yes

No

Yes

No

_1201700396.vsd
Begin Reference Selection

Selection = null?

From current XRD, select next highest priority Ref

Yes

Yes

Ref = any previous Ref in this resolution chain?

Return Ref to calling flowchart

No

Return Error to calling flowchart

Invalid Ref?

Fail any  input processing rules?

No

No

Yes

No

Yes

_1201692463.vsd
Input QXRI

Input valid?

Valid parameters?

No

No

QXRI  includes resolution params?

Error 10 or 11

Yes

Yes

Known community root authority?

No

No

Error 16

Yes

Go to Authority Resolution Flowchart

Select highest priority URI of highest priority authority resolution service for community root

Errors 12, 13, 14, or 15

Yes

